Image
Say More Logo
External articles

Daniela Rus’s dream is to imbue the power of robotics with the wisdom of humanity. She runs MIT’s Computer Science and Artificial Intelligence Laboratory. As part of his ongoing series on the promise and perils of AI, Globe Ideas Editor Brian Bergstein talks to Rus about her new book “The Heart and the Chip.” She says robots won’t just do our chores and work in our factories; they can teach us how to hit tennis balls like Serena Williams and defy gravity like Iron Man. She says your car won’t just drive you around — it might also be a friend. 

Image
alt="MIT researchers’ "consensus game" is a game-theoretic approach for language model decoding. The equilibrium-ranking algorithm harmonizes generative and discriminative querying to enhance prediction accuracy across various tasks, outperforming larger models and demonstrating the potential of game theory in improving language model consistency and truthfulness (Credits: Alex Shipps/MIT CSAIL)."
CSAIL article

Imagine you and a friend are playing a game where your goal is to communicate secret messages to each other using only cryptic sentences. Your friend's job is to guess the secret message behind your sentences. Sometimes, you give clues directly, and other times, your friend has to guess the message by asking yes-or-no questions about the clues you've given. The challenge is that both of you want to make sure you're understanding each other correctly and agreeing on the secret message.

Image
Three new frameworks from MIT CSAIL reveal how natural language can provide important context for language models that perform coding, AI planning, and robotics tasks (Credit: Alex Shipps/MIT CSAIL, with components from the researchers and Pixabay).
CSAIL article

Large language models (LLMs) are becoming increasingly useful for programming and robotics tasks, but for more complicated reasoning problems, the gap between these systems and humans looms large. Without the ability to learn new concepts like humans do, these systems fail to form good abstractions — essentially, high-level representations of complex concepts that skip less-important details — and thus sputter when asked to do more sophisticated tasks.

Image
robot hand butterfly landing
External articles

Daniela Rus is a pioneering roboticist and a professor of electrical engineering and computer science at MIT. She is the director of the Computer Science and Artificial Intelligence Laboratory. She is also a member of the National Academy of Engineering, the American Academy of Arts and Sciences, and a MacArthur Fellow.

Image
alt="MIT researchers have developed a rapid safety check technique which can ensure a robot will avoid collisions while completing a task (Credits: iStock)."
CSAIL article

Before a robot can grab dishes off a shelf to set the table, it must ensure its gripper and arm won’t crash into anything and potentially shatter the fine china. As part of its motion planning process, a robot typically runs “safety check” algorithms that verify its trajectory is collision-free.