Image
alt="Using graph neural networks (GNNs) allows points to “communicate” and self-optimize for better uniformity. Their approach helps optimize point placement to handle complex, multi-dimensional problems necessary for accurate simulations (Image: Alex Shipps/MIT CSAIL)."
CSAIL article

Imagine you’re tasked with sending a team of football players onto a field to assess the condition of the grass (a likely task for them, of course). If you pick their positions randomly, they might cluster together in some areas while completely neglecting others. But if you give them a strategy, like spreading out uniformly across the field, you might get a far more accurate picture of the grass condition.

Image
A system developed by MIT CSAIL researchers can oversee a team of both human and AI agents, communicating with team members to align roles and accomplish a common goal (Credits: Alex Shipps/MIT CSAIL).
CSAIL article

On a research cruise around Hawaii in 2018, Yuening Zhang SM ’19, PhD ’24 saw how difficult it was to keep a tight ship. The careful coordination required to map underwater terrain could sometimes led to a stressful environment for team members, who might have different understandings of which tasks must be completed in spontaneously changing conditions. During these trips, Zhang considered how a robotic companion could have helped her and her crewmates achieve their goals more efficiently.

Image
alt="MIT CSAIL researchers helped design a new technique that can guarantee the stability of robots controlled by neural networks. This development could eventually lead to safer autonomous vehicles and industrial robots (Credits: Alex Shipps/MIT CSAIL)."
CSAIL article

Neural networks have made a seismic impact on how engineers design controllers for robots, catalyzing more adaptive and efficient machines. Still, these brain-like machine-learning systems are a double-edged sword: Their complexity makes them powerful, but it also makes it difficult to guarantee that a robot powered by a neural network will safely accomplish its task.

Image
The Grasping Neural Process uses limited interaction data to help robots understand unclear objects in real-time (Credits: Alex Shipps/MIT CSAIL).
CSAIL article

When robots come across unfamiliar objects, they struggle to account for a simple truth: Appearances aren’t everything. They may attempt to grasp a block, only to find out it’s a literal piece of cake. The misleading appearance of that object could lead the robot to miscalculate physical properties like the object’s weight and center of mass, using the wrong grasp and applying more force than needed.