Image
MIT professor and CSAIL Director Daniela Rus.
CSAIL article

Daniela Rus, a distinguished computer scientist and professor at the Massachusetts Institute of Technology (MIT), has been honored with induction into the prestigious Académie Nationale de Médecine (ANM) as a foreign member on January 7, 2025. As the Director of MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL), Daniela leads over 1,700 researchers in pioneering innovations to advance computing and improve global well-being.

Image
alt="Daniela Rus, Director of CSAIL and MIT EECS Professor, was recently named a co-recipient of the 2024 John Scott Award by the Board of Directors of City Trusts (Credit: Rachel Gordon/MIT CSAIL)."
CSAIL article

Daniela Rus, Director of CSAIL and MIT EECS Professor, was recently named a co-recipient of the 2024 John Scott Award by the Board of Directors of City Trusts. This prestigious honor, steeped in historical significance, celebrates scientific innovation at the very location where American independence was signed in Philadelphia, a testament to the enduring connection between scientific progress and human potential.

Image
The MIT researchers developed an AI-powered simulator that generates unlimited, diverse, and realistic training data for robots. The team found that robots trained in this virtual environment called “LucidSim” can seamlessly transfer their skills to the real world, performing at expert levels without additional fine-tuning (Credit: Mike Grimmett/MIT CSAIL).
CSAIL article

For roboticists, one challenge towers above all others: generalization – the ability to create machines that can adapt to any environment or condition. Since the 1970s, the field has evolved from writing sophisticated programs to using deep learning, teaching robots to learn directly from human behavior. But a critical bottleneck remains: data quality. To improve, robots need to encounter scenarios that push the boundaries of their capabilities, operating at the edge of their mastery. 

Image
alt="The “Diffusion Forcing” method can sort through noisy data and reliably predict the next steps in a task, helping a robot complete manipulation tasks, for example. In one experiment, it helped a robotic arm rearrange toy fruits into target spots on circular mats despite starting from random positions and visual distractions (Credits: Mike Grimmett/MIT CSAIL)."
CSAIL article

In the current AI zeitgeist, sequence models have skyrocketed in popularity for their ability to analyze data and predict what to do next. For instance, you’ve likely used next-token prediction models like ChatGPT, which anticipate each word (token) in a sequence to form answers to users’ queries. There are also full-sequence diffusion models like Sora, which convert words into dazzling, realistic visuals by successively “denoising” an entire video sequence