Log in to access member-exclusive content and features. Not a member? Find out more about engaging with us via membership, initiative sponsorship, and other programs..
One might argue that one of the primary duties of a physician is to constantly evaluate and re-evaluate the odds: What are the chances of a medical procedure’s success? Is the patient at risk of developing severe symptoms? When should the patient return for more testing? Amidst these critical deliberations, the rise of artificial intelligence promises to reduce risk in clinical settings and help physicians prioritize the care of high-risk patients.
If someone advises you to “Know your limits,” they’re likely suggesting you do things like exercise in moderation. To a robot, though, the motto represents learning constraints, or limitations of a specific task within the machine’s environment, to do chores safely and correctly.
Machine-learning models can fail when they try to make predictions for individuals who were underrepresented in the datasets they were trained on.
The field of machine learning is traditionally divided into two main categories: “supervised” and “unsupervised” learning. In supervised learning, algorithms are trained on labeled data, where each input is paired with its corresponding output, providing the algorithm with clear guidance. In contrast, unsupervised learning relies solely on input data, requiring the algorithm to uncover patterns or structures without any labeled outputs.