Latest News & Research

AI image generation — which relies on neural networks to create new images from a variety of inputs, including text prompts — is projected to become a billion-dollar industry by the end of this decade. Even with today’s technology, if you wanted to make a fanciful picture of, say, a friend planting a flag on Mars or heedlessly flying into a black hole, it could take less than a second. However, before they can perform tasks like that, image generators are commonly trained on massive datasets containing millions of images that are often paired with associated text. Training these generative models can be an arduous chore that takes weeks or months, consuming vast computational resources in the process.

Let’s say you’re reading a story, or playing a game of chess. You may not have noticed, but each step of the way, your mind kept track of how the situation (or “state of the world”) was changing. You can imagine this as a sort of sequence of events list, which we use to update our prediction of what will happen next.

As large language models (LLMs) like ChatGPT continue to advance, user expectations of them keep growing, including with respect to how quickly they can respond to our increasingly intricate prompts requesting answers to ever-challenging problems and tasks.

Imagine a future where artificial intelligence quietly shoulders the drudgery of software development: refactoring tangled code, migrating legacy systems, and hunting down race conditions, so that human engineers can devote themselves to architecture, design, and the genuinely novel problems still beyond a machine’s reach. Recent advances appear to have nudged that future tantalizingly close, but a new paper by researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and several collaborating institutions argues that this potential future reality demands a hard look at present-day challenges.