In a two-part series, MIT News explores the environmental implications of generative AI. In this article, we look at why this technology is so resource-intensive. A second piece will investigate what experts are doing to reduce genAI’s carbon footprint and other impacts.
MIT professor Stefanie Mueller’s group has spent much of the last decade developing a variety of computing techniques aimed at reimagining how products and systems are designed. Much in the way that platforms like Instagram allow users to modify 2-D photographs with filters, Mueller imagines a world where we can do the same thing for a wide array of physical objects.
Chatbots can wear a lot of proverbial hats: dictionary, therapist, poet, all-knowing friend. The artificial intelligence models that power these systems appear exceptionally skilled and efficient at providing answers, clarifying concepts, and distilling information. But to establish trustworthiness of content generated by such models, how can we really know if a particular statement is factual, a hallucination, or just a plain misunderstanding?
When Nikola Tesla predicted we’d have handheld phones that could display videos, photographs, and more, his musings seemed like a distant dream. Nearly 100 years later, smartphones are like an extra appendage for many of us.
When you think about hands-free devices, you might picture Alexa and other voice-activated in-home assistants, Bluetooth earpieces, or asking Siri to make a phone call in your car. You might not imagine using your mouth to communicate with other devices like a computer or a phone remotely.
What does sustainable fashion design have in common with Tetris? For both, an intriguing puzzle awaits, where you must configure unique shapes in a way that fills up the available space.