Image
Thermochromorph combines CMYK imaging, laser cutting, manual printmaking, and thermochromic inks to transform images (Credit: Designed by Alex Shipps & photographed by Mike Grimmett, both from MIT CSAIL).
CSAIL article

MIT professor Stefanie Mueller’s group has spent much of the last decade developing a variety of computing techniques aimed at reimagining how products and systems are designed. Much in the way that platforms like Instagram allow users to modify 2-D photographs with filters, Mueller imagines a world where we can do the same thing for a wide array of physical objects.

Image
MIT professor and CSAIL Director Daniela Rus.
CSAIL article

Daniela Rus, a distinguished computer scientist and professor at the Massachusetts Institute of Technology (MIT), has been honored with induction into the prestigious Académie Nationale de Médecine (ANM) as a foreign member on January 7, 2025. As the Director of MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL), Daniela leads over 1,700 researchers in pioneering innovations to advance computing and improve global well-being.

Image
The researchers found that VLMs need much more domain-specific training data to process difficult queries. By familiarizing with more informative data, the models could one day be great research assistants to ecologists, biologists, and other nature scientists (Credit: Alex Shipps/MIT CSAIL).
CSAIL article

Try taking a picture of each of North America's roughly 11,000 tree species, and you’ll have a mere fraction of the millions of photos within nature image datasets. These massive collections of snapshots — ranging from butterflies to humpback whales — are a great research tool for ecologists because they provide evidence of organisms’ unique behaviors, rare conditions, migration patterns, and responses to pollution and other forms of climate change.

Image
In a recent commentary, a team from MIT, Equality AI, and Boston University highlights the gaps in regulation for AI models and non-AI algorithms in health care (Credit: Adobe Stock).
CSAIL article

One might argue that one of the primary duties of a physician is to constantly evaluate and re-evaluate the odds: What are the chances of a medical procedure’s success? Is the patient at risk of developing severe symptoms? When should the patient return for more testing? Amidst these critical deliberations, the rise of artificial intelligence promises to reduce risk in clinical settings and help physicians prioritize the care of high-risk patients.

Image
ContextSSL utilizes a transformer module to encode context as a sequence of state-action-next-state triplets, representing previous experiences with transformations (Credit: The researchers).
CSAIL article

The field of machine learning is traditionally divided into two main categories: “supervised” and “unsupervised” learning. In supervised learning, algorithms are trained on labeled data, where each input is paired with its corresponding output, providing the algorithm with clear guidance. In contrast, unsupervised learning relies solely on input data, requiring the algorithm to uncover patterns or structures without any labeled outputs.