The Importance of Energy Efficiency in AI with Vivienne Sze

In this episode

Vivienne Sze is an associate professor in MIT's Department of Electrical Engineering and Computer Science. She's a coauthor of Efficient Processing of Deep Neural Networks.

A full transcript of this podcast can be viewed here.

About the speakers

Associate Professor, MIT CSAIL

Vivienne Sze received the B.A.Sc. (Hons) degree in electrical engineering from the University of Toronto, Toronto, ON, Canada, in 2004, and the S.M. and Ph.D. degree in electrical engineering from the Massachusetts Institute of Technology (MIT), Cambridge, MA, in 2006 and 2010 respectively. She received the Jin-Au Kong Outstanding Doctoral Thesis Prize in electrical engineering at MIT in 2011.

She is currently an Associate Professor in the Electrical Engineering and Computer Science Department at MIT. Her research interests include energy-efficient algorithms and architectures for portable multimedia applications. From September 2010 to July 2013, she was a Member of Technical Staff in the Systems and Applications R&D Center at Texas Instruments (TI), Dallas, TX, where she designed low-power algorithms and architectures for video coding. She also represented TI in the JCT-VC committee of ITU-T and ISO/IEC standards body during the development of High Efficiency Video Coding (HEVC), which received a Primetime Emmy Engineering Award. Within the committee, she was the primary coordinator of the core experiment on coefficient scanning and coding.

She is a recipient of the 2017 Qualcomm Faculty Award, the 2016 Google Faculty Research Award, the 2016 AFOSR Young Investigator Research Program (YIP) Award, the 2016 3M Non-Tenured Faculty Award, the 2014 DARPA Young Faculty Award, the 2007 DAC/ISSCC Student Design Contest Award, and a co-recipient of the 2017 CICC Outstanding Invited Paper Award, the 2016 IEEE Micro Top Picks Award and the 2008 A-SSCC Outstanding Design Award.