Image
Three new frameworks from MIT CSAIL reveal how natural language can provide important context for language models that perform coding, AI planning, and robotics tasks (Credit: Alex Shipps/MIT CSAIL, with components from the researchers and Pixabay).
CSAIL article

Large language models (LLMs) are becoming increasingly useful for programming and robotics tasks, but for more complicated reasoning problems, the gap between these systems and humans looms large. Without the ability to learn new concepts like humans do, these systems fail to form good abstractions — essentially, high-level representations of complex concepts that skip less-important details — and thus sputter when asked to do more sophisticated tasks.

Image
robot hand butterfly landing
External articles

Daniela Rus is a pioneering roboticist and a professor of electrical engineering and computer science at MIT. She is the director of the Computer Science and Artificial Intelligence Laboratory. She is also a member of the National Academy of Engineering, the American Academy of Arts and Sciences, and a MacArthur Fellow.

Image
alt="MIT researchers have developed a rapid safety check technique which can ensure a robot will avoid collisions while completing a task (Credits: iStock)."
CSAIL article

Before a robot can grab dishes off a shelf to set the table, it must ensure its gripper and arm won’t crash into anything and potentially shatter the fine china. As part of its motion planning process, a robot typically runs “safety check” algorithms that verify its trajectory is collision-free.

Image
alt="Adaptive smart glove from MIT CSAIL researchers can send tactile feedback to teach users new skills, guide robots with more precise manipulation."
CSAIL article

You’ve likely met someone who identifies as a visual or auditory learner, but others absorb knowledge through a different modality: touch. Being able to understand tactile interactions is especially important for tasks such as learning delicate surgeries and playing musical instruments, but unlike video and audio, touch is difficult to record and transfer.

Image
A new optimization framework for robot motion planning
CSAIL article

It isn’t easy for a robot to find its way out of a maze. Picture these machines trying to traverse a kid’s playroom to reach the kitchen, with miscellaneous toys scattered across the floor and furniture blocking some potential paths. This messy labyrinth requires the robot to calculate the most optimal journey to its destination, without crashing into any obstacles. What is the bot to do?