Image
The researchers found that VLMs need much more domain-specific training data to process difficult queries. By familiarizing with more informative data, the models could one day be great research assistants to ecologists, biologists, and other nature scientists (Credit: Alex Shipps/MIT CSAIL).
CSAIL article

Try taking a picture of each of North America's roughly 11,000 tree species, and you’ll have a mere fraction of the millions of photos within nature image datasets. These massive collections of snapshots — ranging from butterflies to humpback whales — are a great research tool for ecologists because they provide evidence of organisms’ unique behaviors, rare conditions, migration patterns, and responses to pollution and other forms of climate change.

Image
When users query a model, ContextCite highlights the specific sources from the external context that the AI relied upon for that answer. If the AI generates an inaccurate fact, for example, users can trace the error back to its source and understand the model’s reasoning (Credit: Alex Shipps/MIT CSAIL).
CSAIL article

Chatbots can wear a lot of proverbial hats: dictionary, therapist, poet, all-knowing friend. The artificial intelligence models that power these systems appear exceptionally skilled and efficient at providing answers, clarifying concepts, and distilling information. But to establish trustworthiness of content generated by such models, how can we really know if a particular statement is factual, a hallucination, or just a plain misunderstanding?

Image
alt="Regina Barzilay, MIT professor, CSAIL Principal Investigator, and Jameel Clinic AI Faculty Lead (Credit: WCVB)."
CSAIL article

Regina Barzilay, School of Engineering Distinguished Professor for AI and Health at MIT, CSAIL Principal Investigator, and Jameel Clinic AI Faculty Lead, has been awarded the 2025 Frances E. Allen Medal from the Institute of Electrical and Electronics Engineers (IEEE). Barzilay’s award recognizes the impact of her machine-learning algorithms on medicine and natural language processing.

Image
The MIT researchers developed an AI-powered simulator that generates unlimited, diverse, and realistic training data for robots. The team found that robots trained in this virtual environment called “LucidSim” can seamlessly transfer their skills to the real world, performing at expert levels without additional fine-tuning (Credit: Mike Grimmett/MIT CSAIL).
CSAIL article

For roboticists, one challenge towers above all others: generalization – the ability to create machines that can adapt to any environment or condition. Since the 1970s, the field has evolved from writing sophisticated programs to using deep learning, teaching robots to learn directly from human behavior. But a critical bottleneck remains: data quality. To improve, robots need to encounter scenarios that push the boundaries of their capabilities, operating at the edge of their mastery. 

Image
alt="The “Diffusion Forcing” method can sort through noisy data and reliably predict the next steps in a task, helping a robot complete manipulation tasks, for example. In one experiment, it helped a robotic arm rearrange toy fruits into target spots on circular mats despite starting from random positions and visual distractions (Credits: Mike Grimmett/MIT CSAIL)."
CSAIL article

In the current AI zeitgeist, sequence models have skyrocketed in popularity for their ability to analyze data and predict what to do next. For instance, you’ve likely used next-token prediction models like ChatGPT, which anticipate each word (token) in a sequence to form answers to users’ queries. There are also full-sequence diffusion models like Sora, which convert words into dazzling, realistic visuals by successively “denoising” an entire video sequence