Image
When users query a model, ContextCite highlights the specific sources from the external context that the AI relied upon for that answer. If the AI generates an inaccurate fact, for example, users can trace the error back to its source and understand the model’s reasoning (Credit: Alex Shipps/MIT CSAIL).
CSAIL article

Chatbots can wear a lot of proverbial hats: dictionary, therapist, poet, all-knowing friend. The artificial intelligence models that power these systems appear exceptionally skilled and efficient at providing answers, clarifying concepts, and distilling information. But to establish trustworthiness of content generated by such models, how can we really know if a particular statement is factual, a hallucination, or just a plain misunderstanding?

Image
alt="Regina Barzilay, MIT professor, CSAIL Principal Investigator, and Jameel Clinic AI Faculty Lead (Credit: WCVB)."
CSAIL article

Regina Barzilay, School of Engineering Distinguished Professor for AI and Health at MIT, CSAIL Principal Investigator, and Jameel Clinic AI Faculty Lead, has been awarded the 2025 Frances E. Allen Medal from the Institute of Electrical and Electronics Engineers (IEEE). Barzilay’s award recognizes the impact of her machine-learning algorithms on medicine and natural language processing.

Image
The MIT researchers developed an AI-powered simulator that generates unlimited, diverse, and realistic training data for robots. The team found that robots trained in this virtual environment called “LucidSim” can seamlessly transfer their skills to the real world, performing at expert levels without additional fine-tuning (Credit: Mike Grimmett/MIT CSAIL).
CSAIL article

For roboticists, one challenge towers above all others: generalization – the ability to create machines that can adapt to any environment or condition. Since the 1970s, the field has evolved from writing sophisticated programs to using deep learning, teaching robots to learn directly from human behavior. But a critical bottleneck remains: data quality. To improve, robots need to encounter scenarios that push the boundaries of their capabilities, operating at the edge of their mastery. 

Image
alt="The “Diffusion Forcing” method can sort through noisy data and reliably predict the next steps in a task, helping a robot complete manipulation tasks, for example. In one experiment, it helped a robotic arm rearrange toy fruits into target spots on circular mats despite starting from random positions and visual distractions (Credits: Mike Grimmett/MIT CSAIL)."
CSAIL article

In the current AI zeitgeist, sequence models have skyrocketed in popularity for their ability to analyze data and predict what to do next. For instance, you’ve likely used next-token prediction models like ChatGPT, which anticipate each word (token) in a sequence to form answers to users’ queries. There are also full-sequence diffusion models like Sora, which convert words into dazzling, realistic visuals by successively “denoising” an entire video sequence

Image
Figure 1: Schematic overview of the framework for on-road evaluation of explanations in automated vehicles (Credit: MIT CSAIL and GIST).
CSAIL article

The Proceedings of the ACM on Interactive, Mobile, Wearable, and Ubiquitous Technologies (IMWUT) Editorial Board has awarded MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Gwangju Institute of Science and Technology (GIST) researchers with a Distinguished Paper Award for their evaluation of visual explanations in autonomous vehicles’ decision-making.

Image
alt="The “Faces in Things” dataset is a comprehensive, human-labeled collection of over 5,000 pareidolic images. The research team trained face-detection algorithms to see faces in these pictures, giving insight into how humans learned to recognize faces within their surroundings (Credits: Alex Shipps/MIT CSAIL)."
CSAIL article

In 1994, Florida jewelry designer Diana Duyser discovered what she believed to be the Virgin Mary’s image in a grilled cheese sandwich, which she preserved and later auctioned for $28,000. But how much do we really understand about pareidolia, the phenomenon of seeing faces and patterns in objects when they aren’t really there?