When researchers are building large language models (LLMs), they aim to maximize performance under a particular computational and financial budget. Since training a model can amount to millions of dollars, developers need to be judicious with cost-impacting decisions about, for instance, the model architecture, optimizers, and training datasets before committing to a model. To anticipate the quality and accuracy of a large model’s predictions, practitioners often turn to scaling laws: using smaller, cheaper models to try to approximate the performance of a much larger target model. The challenge, however, is that there are thousands of ways to create a scaling law.
For pregnant women, ultrasounds are an informative (and sometimes necessary) procedure. They typically produce two-dimensional black-and-white scans of fetuses that can reveal key insights, including biological sex, approximate size, and abnormalities like heart issues or cleft lip. If your doctor wants a closer look, they may use magnetic resonance imaging (MRI), which uses magnetic fields to capture images that can be combined to create a 3D view of the fetus.
The Quant-essential Qualities: Insider Insights for Thriving in Algorithmic Trading
Abstract: The world of quantitative trading is notoriously siloed, secretive, and intensely competitive. In this talk, Hanna and Dan will offer an insider's perspective on quant trading, sharing insights from our firm, and outline the key qualities you can cultivate to excel in the industry.
CSAIL Alliances & FinTechAI@CSAIL Board Member Royal Bank of Canada (RBC) Borealis AI Group will be at CSAIL on 9/22 in Kiva to deliver a technical talk from Dr. Greg Mori as well as connect with interested students for job opportunities.
Talk Title: Foundation Model Challenges and Opportunities in Financial Services
Monday 9/22 in Kiva 32-G449 12-1pm EST. Food will be served so please register for accurate food order!
This event is hosted by Latimer Futures Summit. The event is at capacity and registration is now closed.
Welcome to the Latimer Futures Summit at MIT! Join us for a day filled with inspiring talks, interactive workshops, and networking opportunities with industry experts. Don't miss this chance to gain valuable insights into the future of technology, innovation, and entrepreneurship. Get ready to be inspired and connect with like-minded individuals shaping the future.
Please join the Annual AI & Quantum Summit, hosted by CSAIL Alliances and the MIT Center for Quantum Engineering (MIT CQE). This event is in-person at MIT with a virtual option.
On October 23rd, 2025, CSAIL and MIT experts will gather to explore how the field of quantum computing is changing, how AI innovation is molding quantum’s trajectory, and what business leaders should keep in mind as theory becomes reality.
M.C. Escher’s artwork is a gateway into a world of depth-defying optical illusions, featuring “impossible objects” that break the laws of physics with convoluted geometries. What you perceive his illustrations to be depends on your point of view — for example, a person seemingly walking upstairs may be heading down the steps if you tilt your head sideways.
AI image generation — which relies on neural networks to create new images from a variety of inputs, including text prompts — is projected to become a billion-dollar industry by the end of this decade. Even with today’s technology, if you wanted to make a fanciful picture of, say, a friend planting a flag on Mars or heedlessly flying into a black hole, it could take less than a second. However, before they can perform tasks like that, image generators are commonly trained on massive datasets containing millions of images that are often paired with associated text. Training these generative models can be an arduous chore that takes weeks or months, consuming vast computational resources in the process.
When ChatGPT or Gemini gives what seems to be an expert response to your burning questions, you may not realize how much information it relies on to give that reply. Like other popular artificial intelligence (AI) models, these chatbots rely on backbone systems called foundation models that train on billions or even trillions of data points.
MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) has announced a new direction for its long-standing FinTech research initiative, now FinTechAI@CSAIL, to highlight the central role artificial intelligence is playing in shaping the future of finance.