A team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) tested the boundaries of text. They came up with “TextFooler,” a general framework that can successfully attack natural language processing (NLP) systems — the types of systems that let us interact with our Siri and Alexa voice assistants — and “fool” them into making the wrong predictions.
The mission of the MIT Stephen A. Schwarzman College of Computing is to address the opportunities and challenges of the computing age — from hardware to software to algorithms to artificial intelligence (AI) — by transforming the capabilities of academia in three key areas: supporting the rapid evolution and growth of computer science and AI; facilitating collaborations between computing and other disciplines; and focusing on social and ethical responsibilities of computing through combining technological approaches and insights from social science and humanities, and through engagement beyond academia.
“Most updated digital maps are from places that big companies care the most about. If you’re in places they don’t care about much, you’re at a disadvantage with respect to the quality of map,” says co-author Sam Madden, a professor in the Department of Electrical Engineering and Computer Science (EECS) and a researcher in the Computer Science and Artificial Intelligence Laboratory (CSAIL). “Our goal is to automate the process of generating high-quality digital maps, so they can be available in any country.”
Join us in experiencing VR/AR/XR projects created during the MIT Reality Hack Hackathon 2020! Co-hosted with VR/AR@MIT.
2:00PM - 4:30PM EST
After an intense weekend of creating projects, teams at MIT Reality Hack will show off their hard work! Over 300 participants working as developers, designers, and specialists will participate in this year's Reality Hack. The Public Expo is your chance to check out the projects that participants produce.
“Modern computer processors are opaque, horrendously complicated, and difficult to understand. It is also incredibly challenging to write computer code that executes as fast as possible for these processors,” says co-author Michael Carbin, an assistant professor in the Department of Electrical Engineering and Computer Science (EECS). “This tool is a big step forward toward fully modeling the performance of these chips for improved efficiency.”
With billions of books, news stories, and documents online, there’s never been a better time to be reading — if you have time to sift through all the options. “There’s a ton of text on the internet,” says Justin Solomon, an assistant professor at MIT. “Anything to help cut through all that material is extremely useful.”