Image
Polina Golland
CSAIL article

MIT professor Polina Golland has been named a fellow of the American Institute for Medical and Biological Engineering (AIMBE) for her outstanding contributions to the development of novel techniques for biomedical image analysis and understanding. Golland is joining a group of the top two percent of medical and biological engineers in the country. 

Image
Torralba AAAI
MIT news article

Antonio Torralba, faculty head of Artificial Intelligence and Decision Making within the Department of Electrical Engineering and Computer Science (EECS) and the Thomas and Gerd Perkins Professor of Electrical Engineering and Computer Science, has been selected as a 2021 Fellow by the Association for the Advancement of Artificial Intelligence (AAAI).

Image
CSAIL MATch software
CSAIL article

A team led by researchers from MIT’s Computer Science and Artificial Intelligence Lab (CSAIL) has developed an approach that they say can make texturing even less tedious, to the point where you can snap a pic of something you see in a store, and then go recreate the material on your home laptop

Image
neutral networks mindstate
CSAIL article

In a new paper, a team led by MIT computer scientists trained a neural network to learn NASCAR-style driving maneuvers purely from looking at a sequence of images taken from a two-person racing game. The network begins without knowing anything about cars, roads, or driving - and yet ultimately becomes able to do complex moves like overtaking an opponent on a turn and even forcing other cars off the road. 

Image
ML heart failure
MIT news article

A group led by researchers at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL) has developed a machine learning model that can look at an X-ray to quantify how severe the edema is, on a four-level scale ranging from 0 (healthy) to 3 (very, very bad). The system determined the right level more than half of the time, and correctly diagnosed level 3 cases 90 percent of the time.

Category
Graphic & Vision
Language
Python

The focus of recent meta-learning research has been on the development of learning algorithms that can quickly adapt to test time tasks with limited data and low computational cost. Few-shot learning is widely used as one of the standard benchmarks in meta-learning. In this work, we show that a simple baseline: learning a supervised or self-supervised representation on the meta-training set, followed by training a linear classifier on top of this representation, outperforms state-of-the-art few-shot learning methods. An additional boost can be achieved through the use of self-distillation.

MIT License
Last Updated
Image
virtual reality computational model
MIT news article

The national dialogue on race has progressed powerfully and painfully in the past year, and issues of racial bias in the news have become ubiquitous. However, for over a decade, researchers from MIT’s Imagination, Computation, and Expression Laboratory (ICE Lab) have been developing systems to model, simulate, and analyze such issues of identity.