"The net effect [of DeepSeek] should be to significantly increase the pace of AI development, since the secrets are being let out and the models are now cheaper and easier to train by more people." ~ Associate Professor Phillip Isola
As the capabilities of generative AI models have grown, you've probably seen how they can transform simple text prompts into hyperrealistic images and even extended video clips.
By adapting artificial intelligence models known as large language models, researchers have made great progress in their ability to predict a protein’s structure from its sequence. However, this approach hasn’t been as successful for antibodies, in part because of the hypervariability seen in this type of protein.
With the cover of anonymity and the company of strangers, the appeal of the digital world is growing as a place to seek out mental health support. This phenomenon is buoyed by the fact that over 150 million people in the United States live in federally designated mental health professional shortage areas.
One might argue that one of the primary duties of a physician is to constantly evaluate and re-evaluate the odds: What are the chances of a medical procedure’s success? Is the patient at risk of developing severe symptoms? When should the patient return for more testing? Amidst these critical deliberations, the rise of artificial intelligence promises to reduce risk in clinical settings and help physicians prioritize the care of high-risk patients.
Whether you’re describing the sound of your faulty car engine or meowing like your neighbor’s cat, imitating sounds with your voice can be a helpful way to relay a concept when words don’t do the trick.
Research scientist Yosuke Tanigawa and Professor Manolis Kellis at MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed a novel methodology in human genetics to address an often-overlooked problem: how to handle clinical measurements that fall "below the limit of quantification" (BLQ). Recently published in the American Journal of Human Genetics, their new approach, "hypometric genetics," utilizes these typically discarded measurements to enhance genetic discovery, with significant implications for personalized genomic medicine and drug development.
To the untrained eye, a medical image like an MRI or X-ray appears to be a murky collection of black-and-white blobs. It can be a struggle to decipher where one structure (like a tumor) ends and another begins.
Are you a CSAIL entrepreneur? Are you curious about the resources that CSAIL Alliances, as well as the rest of the MIT Ecosystem can offer you? Sign up for Office Hours using the form to ask Christiana Kalfas, Sr.
An MIT study published today in Nature provides new evidence for how specific cells and circuits become vulnerable in Alzheimer’s disease, and hones in on other factors that may help some people show resilience to cognitive decline, even amid clear signs of disease pathology. To highlight potential targets for interventions to sustain cognition and memory, the authors engaged in a novel comparison of gene expression across multiple brain regions in people with or without Alzheimer’s disease, and conducted lab experiments to test and validate their major findings.