Image
Ray and Maria Stata Center exterior
External articles

"The net effect [of DeepSeek] should be to significantly increase the pace of AI development, since the secrets are being let out and the models are now cheaper and easier to train by more people." ~ Associate Professor Phillip Isola

Image
In a recent commentary, a team from MIT, Equality AI, and Boston University highlights the gaps in regulation for AI models and non-AI algorithms in health care (Credit: Adobe Stock).
CSAIL article

One might argue that one of the primary duties of a physician is to constantly evaluate and re-evaluate the odds: What are the chances of a medical procedure’s success? Is the patient at risk of developing severe symptoms? When should the patient return for more testing? Amidst these critical deliberations, the rise of artificial intelligence promises to reduce risk in clinical settings and help physicians prioritize the care of high-risk patients.

Image
The "hypometric genetics" approach uses these typically disregarded measurements to improve genetic discovery up to 2.8 times (Credit: The researchers).
CSAIL article

Research scientist Yosuke Tanigawa and Professor Manolis Kellis at MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed a novel methodology in human genetics to address an often-overlooked problem: how to handle clinical measurements that fall "below the limit of quantification" (BLQ). Recently published in the American Journal of Human Genetics, their new approach, "hypometric genetics," utilizes these typically discarded measurements to enhance genetic discovery, with significant implications for personalized genomic medicine and drug development.

Image
An analysis of human brain samples ooking for factors associated with neural vulnerability and cognitive resilience amid Alzheimer's disease (Credit: Tsai Lab/The Picower Institute).
CSAIL article

An MIT study published today in Nature provides new evidence for how specific cells and circuits become vulnerable in Alzheimer’s disease, and hones in on other factors that may help some people show resilience to cognitive decline, even amid clear signs of disease pathology. To highlight potential targets for interventions to sustain cognition and memory, the authors engaged in a novel comparison of gene expression across multiple brain regions in people with or without Alzheimer’s disease, and conducted lab experiments to test and validate their major findings.