Image
A small molecule binds to an OX2 protein. The new foundation model Boltz-2, developed by researchers at MIT and Recursion, achieves state-of-the-art performance in protein binding affinity prediction (Image: Courtesy of the researchers).
CSAIL article

Understanding how molecules interact is central to biology: from decoding how living organisms function to uncovering disease mechanisms and developing life-saving drugs. In recent years, models like AlphaFold changed our ability to predict the 3D structure of proteins, offering crucial insights into molecular shape and interaction. But while AlphaFold could show how molecules fit together, it couldn’t measure how strongly they bind — a key factor in understanding all aforementioned. That missing piece is where MIT’s new AI model, Boltz-2, comes in. 

Image
The models were trained on a dataset of synthetic images like the ones pictured, with objects such as tea kettles or calculators superimposed on different backgrounds. Researchers trained the model to identify one or more spatial features of an object, including rotation, location, and distance (Credits: Courtesy of the researchers).
CSAIL article

When visual information enters the brain, it travels through two pathways that process different aspects of the input. For decades, scientists have hypothesized that one of these pathways, the ventral visual stream, is responsible for recognizing objects, and that it might have been optimized by evolution to do just that.

Image
Ray and Maria Stata Center exterior
External articles

"The net effect [of DeepSeek] should be to significantly increase the pace of AI development, since the secrets are being let out and the models are now cheaper and easier to train by more people." ~ Associate Professor Phillip Isola