Image
alt="MIT CSAIL researchers helped design a new technique that can guarantee the stability of robots controlled by neural networks. This development could eventually lead to safer autonomous vehicles and industrial robots (Credits: Alex Shipps/MIT CSAIL)."
CSAIL article

Neural networks have made a seismic impact on how engineers design controllers for robots, catalyzing more adaptive and efficient machines. Still, these brain-like machine-learning systems are a double-edged sword: Their complexity makes them powerful, but it also makes it difficult to guarantee that a robot powered by a neural network will safely accomplish its task.

Image
alt="A new technique could help people determine whether to trust an AI model’s predictions (Image: MIT News; iStock)."
CSAIL article

Because machine-learning models can give false predictions, researchers often equip them with the ability to tell a user how confident they are about a certain decision. This is especially important in high-stake settings, such as when models are used to help identify disease in medical images or filter job applications.

Image
MosaicML (L-R): Naveen Rao, Michael Carbin, Julie Shin Choi, Jonathan Frankle, and Hanlin Tang (Credit: Courtesy of MosaicML).
CSAIL article

The impact of artificial intelligence will never be equitable if there’s only one company that builds and controls the models (not to mention the data that go into them). Unfortunately, today’s AI models are made up of billions of parameters that must be trained and tuned to maximize performance for each use case, putting the most powerful AI models out of reach for most people and companies.