Image
A small molecule binds to an OX2 protein. The new foundation model Boltz-2, developed by researchers at MIT and Recursion, achieves state-of-the-art performance in protein binding affinity prediction (Image: Courtesy of the researchers).
CSAIL article

Understanding how molecules interact is central to biology: from decoding how living organisms function to uncovering disease mechanisms and developing life-saving drugs. In recent years, models like AlphaFold changed our ability to predict the 3D structure of proteins, offering crucial insights into molecular shape and interaction. But while AlphaFold could show how molecules fit together, it couldn’t measure how strongly they bind — a key factor in understanding all aforementioned. That missing piece is where MIT’s new AI model, Boltz-2, comes in. 

Image
"We want to enable AI in the highest-stakes applications of every industry," says Themis AI co-founder Alexander Amini ’17, SM ’18, PhD ’22 (Credits: MIT News; iStock).
CSAIL article

Artificial intelligence systems like ChatGPT provide plausible-sounding answers to any question you might ask. But they don’t always reveal the gaps in their knowledge or areas where they’re uncertain. That problem can have huge consequences as AI systems are increasingly used to do things like develop drugs, synthesize information, and drive autonomous cars.

Image
Top row, left to right: Matthew Caren, April Qiu Cheng, Arav Karighattam, and Benjamin Lou. Bottom row, left to right: Isabelle Quaye, Albert Qin, Ananthan Sadagopan, and Gianfranco (Franco) Yee (Credits: Photos courtesy of the Hertz Foundation).
CSAIL article

The Hertz Foundation announced that it has awarded fellowships to eight MIT affiliates. The prestigious award provides each recipient with five years of doctoral-level research funding (up to a total of $250,000), which gives them an unusual measure of independence in their graduate work to pursue groundbreaking research.

Image
alt="SketchAgent uses a multimodal language model to turn natural language prompts into sketches in a few seconds. It can doodle on its own or through collaboration, drawing with a human or incorporating text-based input to sketch each part separately (Credits: Alex Shipps/MIT CSAIL, with AI-generated sketches from the researchers)."
CSAIL article

When you’re trying to communicate or understand ideas, words don’t always do the trick. Sometimes the more efficient approach is to do a simple sketch of that concept — for example, diagramming a circuit might help make sense of how the system works.

But what if artificial intelligence could help us explore these visualizations? While these systems are typically proficient at creating realistic paintings and cartoonish drawings, many models fail to capture the essence of sketching: its stroke-by-stroke, iterative process, which helps humans brainstorm and edit how they want to represent their ideas.

Image
A new color-correcting tool, SeaSplat, reconstructs true colors of an underwater image, taken in Curacao. The original photo is in the left, and the color-corrected version made with SeaSplat is on the right (Credits: Courtesy of the researchers).
CSAIL article

The ocean is teeming with life. But unless you get up close, much of the marine world can easily remain unseen. That’s because water itself can act as an effective cloak: Light that shines through the ocean can bend, scatter, and quickly fade as it travels through the dense medium of water and reflects off the persistent haze of ocean particles. This makes it extremely challenging to capture the true color of objects in the ocean without imaging them at close range.