Fish are masters of coordinated motion. Schools of fish have no leader, yet individuals manage to stay in formation, avoid collisions, and respond with liquid flexibility to changes in their environment. Reproducing this combination of robustness and flexibility has been a long-standing challenge for human engineered systems like robots. Now, using virtual reality for freely-moving fish, a research team based in Konstanz has taken an important step towards that goal.
An estimated 20% of every dollar spent on manufacturing is wasted, totaling up to $8 trillion a year, more than the entire annual budget for the U.S. federal government. While industries like healthcare and finance have been rapidly transformed by digital technologies, manufacturing has relied on traditional processes that lead to costly errors, product delays, and an inefficient use of engineers’ time.
Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed a novel artificial intelligence (AI) model inspired by neural oscillations in the brain, with the goal of significantly advancing how machine learning algorithms handle long sequences of data.
MIT researchers have created a periodic table that shows how more than 20 classical machine-learning algorithms are connected. The new framework sheds light on how scientists could fuse strategies from different methods to improve existing AI models or come up with new ones.