Filter Options
Date
Image
Anantha P. Chandrakasan, chief innovation and strategy officer and dean of the School of Engineering who is head of the consortium, kicks off afternoon MIT Generative AI Impact Consortium (MGAIC) presentations (Credits: Jiin Kang).
CSAIL article

Launched in February of this year, the MIT Generative AI Impact Consortium (MGAIC), a presidential initiative led by MIT’s Office of Innovation and Strategy and administered by the MIT Stephen A. Schwarzman College of Computing, issued a call for proposals, inviting researchers from across MIT to submit ideas for innovative projects studying high-impact uses of generative AI models.

Image
A small molecule binds to an OX2 protein. The new foundation model Boltz-2, developed by researchers at MIT and Recursion, achieves state-of-the-art performance in protein binding affinity prediction (Image: Courtesy of the researchers).
CSAIL article

Understanding how molecules interact is central to biology: from decoding how living organisms function to uncovering disease mechanisms and developing life-saving drugs. In recent years, models like AlphaFold changed our ability to predict the 3D structure of proteins, offering crucial insights into molecular shape and interaction. But while AlphaFold could show how molecules fit together, it couldn’t measure how strongly they bind — a key factor in understanding all aforementioned. That missing piece is where MIT’s new AI model, Boltz-2, comes in.