Most people recognize Alzheimer’s from its devastating symptoms such as memory loss, while new drugs target pathological aspects of disease manifestations, such as plaques of amyloid proteins. Now a sweeping new study in the Sept. 4 edition of Cell by MIT researchers shows the importance of understanding the disease as a battle over how well brain cells control the expression of their genes.. The study paints a high-resolution picture of a desperate struggle to maintain healthy gene expression and gene regulation where the consequences of failure or success are nothing less than the loss or preservation of cell function and cognition.
Every year, global health experts are faced with a high-stakes decision: which flu strains should go into the next seasonal vaccine? The choice must be made months in advance, long before flu season even begins, and it can often feel like a race against the clock. If the selected strains match those that circulate, the vaccine will likely be highly effective. But if the prediction is off, protection can drop significantly, leading to (potentially preventable) illness and strain on healthcare systems.
When the IEEE International Conference on Robotics and Automation (ICRA) first convened 40 years ago, the robotics community shared a clear vision: robots would one day combine elegant mathematical models with advanced computation to handle complex tasks. Four decades later, the community is divided over how to reach that goal. That divide was on full display this May in Atlanta, where ICRA marked its anniversary with a unique closing keynote: a live Oxford-style debate on whether “data will solve robotics and automation.”
MIT researchers have developed a reconfigurable antenna that dynamically adjusts its frequency range by changing its physical shape, making it more versatile for communications and sensing than static antennas.