Filter Options
Date
Image
Figure 1: Schematic overview of the framework for on-road evaluation of explanations in automated vehicles (Credit: MIT CSAIL and GIST).
CSAIL article

The Proceedings of the ACM on Interactive, Mobile, Wearable, and Ubiquitous Technologies (IMWUT) Editorial Board has awarded MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Gwangju Institute of Science and Technology (GIST) researchers with a Distinguished Paper Award for their evaluation of visual explanations in autonomous vehicles’ decision-making.

Image
alt="Using graph neural networks (GNNs) allows points to “communicate” and self-optimize for better uniformity. Their approach helps optimize point placement to handle complex, multi-dimensional problems necessary for accurate simulations (Image: Alex Shipps/MIT CSAIL)."
CSAIL article

Imagine you’re tasked with sending a team of football players onto a field to assess the condition of the grass (a likely task for them, of course). If you pick their positions randomly, they might cluster together in some areas while completely neglecting others. But if you give them a strategy, like spreading out uniformly across the field, you might get a far more accurate picture of the grass condition.