Image
robot hand butterfly landing
External articles

Daniela Rus is a pioneering roboticist and a professor of electrical engineering and computer science at MIT. She is the director of the Computer Science and Artificial Intelligence Laboratory. She is also a member of the National Academy of Engineering, the American Academy of Arts and Sciences, and a MacArthur Fellow.

Image
pannel
CSAIL article

From students crafting essays and engineers writing code to call center operators responding to customers, generative artificial intelligence tools have prompted a wave of experimentation over the past year. At MIT, these experiments have raised questions — some new, some ages old — about how these tools can change the way we live and work.

 

Image
Researchers from MIT and elsewhere found that complex large language machine-learning models use a simple mechanism to retrieve stored knowledge when they respond to a user prompt. The researchers can leverage these simple mechanisms to see what the model knows about different subjects, and also possibly correct false information that it has stored (Credits: iStock).
CSAIL article

Large language models, such as those that power popular artificial intelligence chatbots like ChatGPT, are incredibly complex. Even though these models are being used as tools in many areas, such as customer support, code generation, and language translation, scientists still don’t fully grasp how they work.

Image
With their DMD method, MIT researchers created a one-step AI image generator that achieves image quality comparable to StableDiffusion v1.5 while being 30 times faster (Credits: Illustration by Alex Shipps/MIT CSAIL using six AI-generated images developed by researchers).
CSAIL article

In our current age of artificial intelligence, computers can generate their own “art” by way of diffusion models, iteratively adding structure to a noisy initial state until a clear image or video emerges. Diffusion models have suddenly grabbed a seat at everyone’s table: Enter a few words and experience instantaneous, dopamine-spiking dreamscapes at the intersection of reality and fantasy. Behind the scenes, it involves a complex, time-intensive process requiring numerous iterations for the algorithm to perfect the image.

Image
alt="FeatUp is an algorithm that upgrades the resolution of deep networks for improved performance in computer vision tasks such as object recognition, scene parsing, and depth measurement (Credits: Mark Hamilton and Alex Shipps/MIT CSAIL, top image via Unsplash)."
CSAIL article

Imagine yourself glancing at a busy street for a few moments, then trying to sketch the scene you saw from memory. Most people could draw the rough positions of the major objects like cars, people, and crosswalks, but almost no one can draw every detail with pixel-perfect accuracy. The same is true for most modern computer vision algorithms: They are fantastic at capturing high-level details of a scene, but they lose fine-grained details as they process information.