When researchers are building large language models (LLMs), they aim to maximize performance under a particular computational and financial budget. Since training a model can amount to millions of dollars, developers need to be judicious with cost-impacting decisions about, for instance, the model architecture, optimizers, and training datasets before committing to a model. To anticipate the quality and accuracy of a large model’s predictions, practitioners often turn to scaling laws: using smaller, cheaper models to try to approximate the performance of a much larger target model. The challenge, however, is that there are thousands of ways to create a scaling law.
For pregnant women, ultrasounds are an informative (and sometimes necessary) procedure. They typically produce two-dimensional black-and-white scans of fetuses that can reveal key insights, including biological sex, approximate size, and abnormalities like heart issues or cleft lip. If your doctor wants a closer look, they may use magnetic resonance imaging (MRI), which uses magnetic fields to capture images that can be combined to create a 3D view of the fetus.
Whether you’re an artist, advertising specialist, or just looking to spruce up your home, turning everyday objects into dynamic displays is a great way to make them more visually engaging. For example, you could turn a kids’ book into a handheld cartoon of sorts, making the reading experience more immersive and memorable for a child.
The world is awash in data visualizations, from charts accompanying news stories on the economy to graphs tracking the weekly temperature to scatterplots showing relationships between baseball statistics.