Log in to access member-exclusive content and features. Not a member? Find out more about engaging with us via membership, initiative sponsorship, and other programs..
Most languages use word position and sentence structure to extract meaning. For example, “The cat sat on the box,” is not the same as “The box was on the cat.” Over a long text, like a financial document or a novel, the syntax of these words likely evolves.
To innovate as a technologist, you need to be a polyglot—fluent in multiple languages of problem-solving, able to synthesize ideas across domains, reframing puzzles to visualize different outcomes, and revealing the questions that have yet to be asked.
Computer-aided design (CAD) systems are tried-and-true tools used to design many of the physical objects we use each day. But CAD software requires extensive expertise to master, and many tools incorporate such a high level of detail they don’t lend themselves to brainstorming or rapid prototyping.
As language models (LMs) improve at tasks like image generation, trivia questions, and simple math, you might think that human-like reasoning is around the corner. In reality, they still trail us by a wide margin on complex tasks. Try playing Sudoku with one, for instance, where you fill in numbers one through nine in such a way that each appears only once across the columns, rows, and sections of a nine-by-nine grid. Your AI opponent will either fail to fill in boxes on its own or do so inefficiently, though it can verify if you’ve filled yours out correctly.