Image
Three new frameworks from MIT CSAIL reveal how natural language can provide important context for language models that perform coding, AI planning, and robotics tasks (Credit: Alex Shipps/MIT CSAIL, with components from the researchers and Pixabay).
CSAIL article

Large language models (LLMs) are becoming increasingly useful for programming and robotics tasks, but for more complicated reasoning problems, the gap between these systems and humans looms large. Without the ability to learn new concepts like humans do, these systems fail to form good abstractions — essentially, high-level representations of complex concepts that skip less-important details — and thus sputter when asked to do more sophisticated tasks.

Image
alt="A team of MIT researchers found highly memorable images have stronger and sustained responses in ventro-occipital brain cortices, peaking at around 300ms. Conceptually similar but easily forgettable images quickly fade away (Credits: Alex Shipps/MIT CSAIL)."
CSAIL article

For nearly a decade, a team of MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) researchers have been seeking to uncover why certain images persist in a people's minds, while many others fade. To do this, they set out to map the spatio-temporal brain dynamics involved in recognizing a visual image. And now for the first time, scientists harnessed the combined strengths of magnetoencephalography (MEG), which captures the timing of brain activity, and functional magnetic resonance imaging (fMRI), which identifies active brain regions, to precisely determine when and where the brain processes a memorable image.

Image
Researchers from MIT and elsewhere designed a communication framework that enables academics to ask for research help on social media using meronymous communication, in which the asker only reveals certain verified aspects of their identity. They found that meronymous communication encouraged people to ask questions they otherwise might not have for fear of judgment from more senior scientists (Credits: MIT News; iStock).
CSAIL article

Have you ever felt reluctant to share ideas during a meeting because you feared judgment from senior colleagues? You’re not alone. Research has shown this pervasive issue can lead to a lack of diversity in public discourse, especially when junior members of a community don’t speak up because they feel intimidated.

Image
alt="Situated in the heart of campus on Vassar Street, the central location of the MIT Schwarzman College of Computing building will help form a new cluster of connectivity across a spectrum of disciplines in computing and artificial intelligence at MIT (Photo: Dave Burk/SOM)."
CSAIL article

On Vassar Street, in the heart of MIT’s campus, the MIT Stephen A. Schwarzman College of Computing recently opened the doors to its new headquarters in Building 45. The building’s central location and welcoming design will help form a new cluster of connectivity at MIT and enable the space to have a multifaceted role. 

Image
To close the gap with classical computers, researchers created the quantum control machine — an instruction set for a quantum computer that works like the classical idea of a virtual machine (Credits: Alex Shipps/MIT CSAIL).
CSAIL article

When MIT professor and now Computer Science and Artificial Intelligence Laboratory (CSAIL) member Peter Shor first demonstrated the potential of quantum computers to solve problems faster than classical ones, he inspired scientists to imagine countless possibilities for the emerging technology. Thirty years later, though, the quantum edge remains a peak not yet reached.

Image
pannel
CSAIL article

From students crafting essays and engineers writing code to call center operators responding to customers, generative artificial intelligence tools have prompted a wave of experimentation over the past year. At MIT, these experiments have raised questions — some new, some ages old — about how these tools can change the way we live and work.