FALCONN

FALCONN is a library with algorithms for the nearest neighbor search problem. The algorithms in FALCONN are based on Locality-Sensitive Hashing (LSH), which is a popular class of methods for nearest neighbor search in high-dimensional spaces. The goal of FALCONN is to provide very efficient and well-tested implementations of LSH-based data structures.

Currently, FALCONN supports two LSH families for the cosine similarity: hyperplane LSH and cross polytope LSH. Both hash families are implemented with multi-probe LSH in order to minimize memory usage. Moreover, FALCONN is optimized for both dense and sparse data. Despite being designed for the cosine similarity, FALCONN can often be used for nearest neighbor search under the Euclidean distance or a maximum inner product search.

FALCONN is written in C++ and consists of several modular core classes with a convenient wrapper around them. Many mathematical operations in FALCONN are vectorized through the Eigen and FFHT libraries. The core classes of FALCONN rely on templates in order to avoid runtime overhead.

Last Updated
Language
License