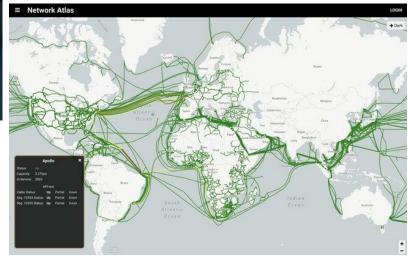
Trust and Technology: Growing Gaps and Urgent Opportunities

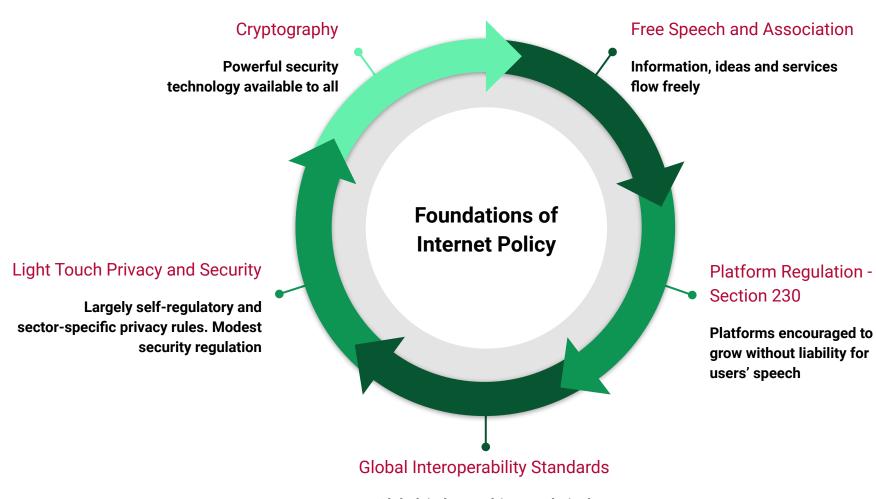
MIT Future of Data Initiative January 21, 2021

Daniel J. Weitzner 3Com Founders Principal Research Scientist, MIT CSAIL Founding Director, MIT Internet Policy Research Initiative

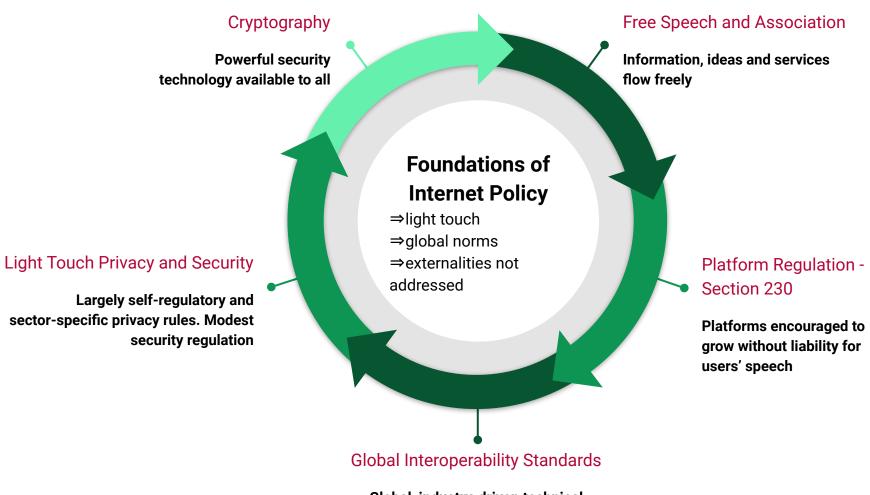
Director, CSAIL Computing and Society Community of Research



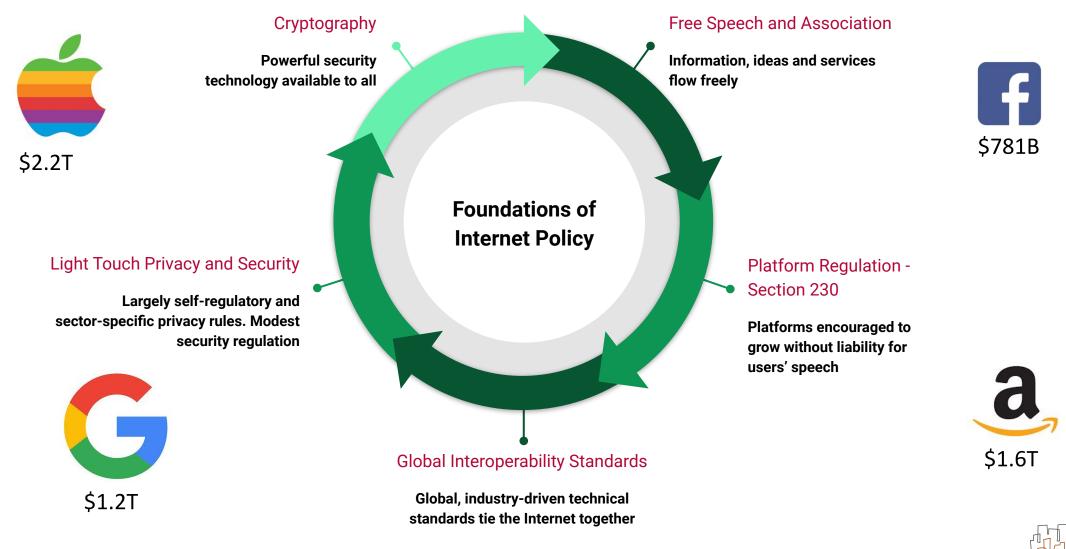
Four Decades of Computing Leadership: 1982 - 2018



MIT C S A I



Global, industry-driven technical standards tie the Internet together



Global, industry-driven technical standards tie the Internet together

\$6T+/3B Person-enabling Internet Policy framework

Global, industry-driven technical standards tie the Internet together

Cryptography

Gap: pressure to reduce E2E crypto to help law enforcement Risk: market-wide security vulns Opportunity: new secure computing techniques

Light Touch Privacy and Security

Gap: GDPR is new global norm Risk: slower data innovation, bleed from privacy to Al regulation Opportunity: Data Governance, High-trust Al Rules, New security metrics

Foundations of Internet Policy

⇒EU-US split + China
 ⇒permission-based
 innovation
 ⇒increased market
 concentration

freely

Free Speech and Association

Information, ideas and services flow

Platform Regulation -Section 230

Platforms encouraged to grow without liability for users' speech

Global Interoperability Standards

Global, industry-driven technical standards tie the Internet together

Cryptography

Gap: pressure to reduce E2E crypto to help law enforcement Risk: market-wide security vulns Opportunity: new secure computing techniques

Light Touch Privacy and Security

Gap: GDPR is new global norm Risk: slower data innovation, bleed from privacy to Al regulation Opportunity: Data Governance, High-trust Al Rules, New security metrics

Foundations of Internet Policy

- ⇒EU-US split + China
 ⇒permission-based
 innovation
 ⇒increased market
- concentration

Free Speech and Association

Information, ideas and services flow freely

Platform Regulation - Section 230

Gap: Pressure to address disinformation, curb crime
Risk: increased compliance burden -> market
concentration and reduced services innovation
Opportunity: new content moderation tech and norms

Global Interoperability Standards

Global, industry-driven technical standards tie the Internet together

8

Cryptography

Gap: pressure to reduce E2E crypto to help law enforcement Risk: market-wide security vulns Opportunity: new secure computing techniques

Light Touch Privacy and Security

Gap: GDPR is new global norm Risk: slower data innovation, bleed from privacy to Al regulation Opportunity: Data Governance, High-trust Al Rules, New security metrics

Foundations of Internet Policy

⇒EU-US split + China
 ⇒permission-based
 innovation
 ⇒increased market

concentration

Free Speech and Association

Gap: IoT and sensor networks put pressure on freedom of association.
Risk: Chilling effect or tech rejectionism
Opportunity: Policy and best practices for sensor networks and IoT collection sensitive data.

Platform Regulation - Section 230

Gap: Pressure to address disinformation, curb crime Risk: increased compliance burden -> market concentration and reduced services innovation Opportunity: new content moderation tech and norms

Global Interoperability Standards

Gap: National-security (US-EU-UK)/mercantilist (China) policiesRisk: balkanization -> lost Metcalfe's law valueOpportunity: empirically-based security/reliability and new trade policies

Frontiers of Computing no longer purely technical

M.I.T. Plans College for Artificial Intelligence, Backed by \$1 Billion

f ¥ 🛛 🔶 🗌

The Massachusetts Institute of Technology is taking a particularly ambitious step in preparing students to develop, and consider the implications of, artificial intelligence. It is creating a new college, backed by a planned investment of \$1 billion. Cody O'Loughlin for The New York Times

"The MIT Schwarzman College of Computing will seek to be not only a center of advances in computing, but also a place for teaching and research on relevant policy and ethics to better ensure that the groundbreaking technologies of the future are responsibly implemented in support of the greater good." -MIT President Rafael Reif

Future of Data: Research Agenda

6.000

5,500

5.000

4,500

4,000 3,500 3,500 3,000 2,500

2.000

1,500

1,000

500

Problem: Cyber attacks happen all the time, but we collectively learn very little from them because firms are reluctant to disclose how they were attacked and the magnitude of their losses.

Gap: Lack of cyber risk pricing models:

- Impair CISO investment and prioritization decisions
- Limit quality and efficiency of cyber insurance
- Leave policymakers and regulators making uninformed choices in setting security standards
- Sow public distrust

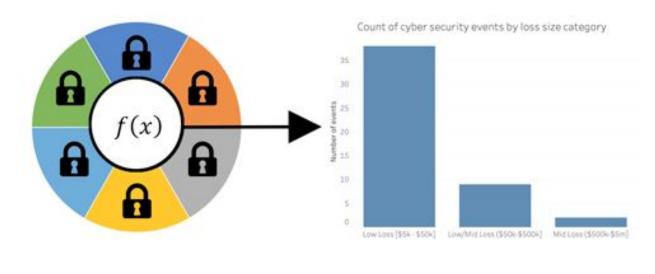
de Castro, L., Lo, A. W., Reynolds, T., Susan, F., Vaikuntanathan, V., Weitzner, D., & Zhang, N. (2020). SCRAM: A Platform for Securely Measuring Cyber Risk . Harvard Data Science Review.

^{___}https://doi.org/10.1162/99608f92.b4bb506a⁻

Subset of problematic controls that needs additional attention and investment

https://scram.mit.edu

14.08 13.08 12.11 14.07 12.03 2.01 7.05 12.03 7.05 16.03 8.03 8.03 8.03 8.03 16.06 16.05 116.06 118.05 118.05 118.05 118.05 115.02 115.02 115.02 115.02 112.09 112.09 112.03 112.03 112.03 112.03 112.03 112.03 112.03 112.03 112.03 113.05 115.05 115.


We built a solution

Using our new cryptographic platform (multi-party computation), firms can securely and privately contribute sensitive data for calculating aggregate frequency and loss data without disclosure to anyone - including MIT!

Homomorphic encryption \rightarrow Elegant way of computing on encrypted data

Internet Policy Research Initiative

Early results: Losses by category

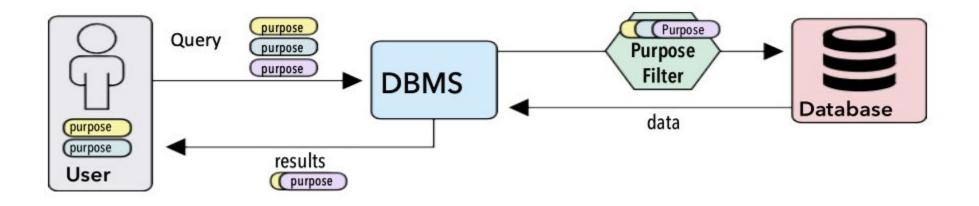
6	Maintenance, Monitoring, and Analysis of Audit Logs								
12	Boundary Defense								
1	Inventory and Control of Hardware Assets					1			
8	Malware Defenses								
16	Account Monitoring and Control								
20	Penetration Tests and Red Team Exercises								
18	Application Software Security								
17	Implement a Security Awareness and Training Program								
14	Controlled Access Based on the Need to Know								
4	Controlled Use of Administrative Privileges								
9	Limitation and Control of Network Ports, Protocols, and Services								
5	Secure Configurations for Hardware and Software								
13	Data Protection								
3	Continuous Vulnerability Management								
7	Email and Web Browser Protections								
10	Data Recovery Capabilities								
2	Inventory and Control of Software Assets								
11	Secure Configuration for Network Devices								
15	Wireless Access Control								
19	Incident Response and Management								
		\$0	\$1,000	\$2,000	\$3,000	\$4,000	\$5,000	\$6,000	\$7,000
					Sum o	f losses in US	D '000		

"Implemented" does not mean protected

				Avg. P	ct Adopt		
		0%	20%	40%	60%	80%	100%
13	Data Protection						
14	Controlled Access Based on the Need to Know						
20	Penetration Tests and Red Team Exercises						
1	Inventory and Control of Hardware Assets						
11	Secure Configuration for Network Devices						
9	Limitation and Control of Network Ports, Protocols, and Services						
16	Account Monitoring and Control						
2	Inventory and Control of Software Assets						
15	Wireless Access Control						
4	Controlled Use of Administrative Privileges						
12	Boundary Defense						
8	Malware Defenses						
18	Application Software Security						
17	Implement a Security Awareness and Training Program						
7	Email and Web Browser Protections			hi .			
10	Data Recovery Capabilities						
5	Secure Configurations for Hardware and Software						
6	Maintenance, Monitoring, and Analysis of Audit Logs						
3	Continuous Vulnerability Management						
19	Incident Response and Management						

Correlation of control adoption with losses

10.3%


Tools: GDPR-aware database architecture

Initiative

unsolved problems

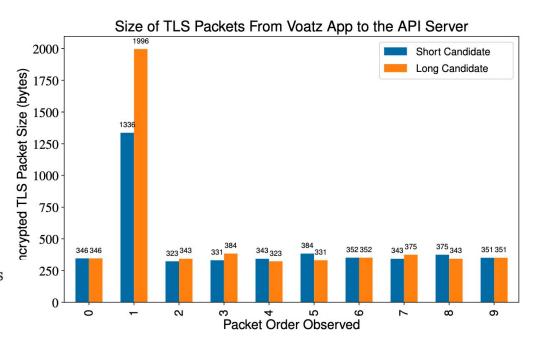
GDPR	Consumer Privacy Bill of Rights	Cal. Consumer Privacy Act	Apple proposal
Lawful basis - Consent, etc.	Right individual control		
legitimate interest,etc	Right to respect for context	Purpose limitation	
Right to be informed	Right to transparency	Right to know enforcement	Right to know
Right of access	Right to as Effective Notice -		Right to access
Right to rectification	Right to accul HCI/UX	Hard Delete	
Right to erasure			
Right to restrict processing		No discrimination for exercise	Right to minimization
Right to portability	Machine S Graph		
Right to object	Right to c privacy	ML	
Right to avoid automated decisionmaking & explanation			olicy-Aware
Data Breach Notification	Security & Breach Notification	E	vent Logging rity
Accountability	Accountability		
Fines < 4% annual revenue	Fines	\$7500/incident, 30 day cure	MII

Purpose-Aware Database Architecture

Stonebraker, M., Brodie, M., Kraska, T., Servan-Schreiber, S., Weitzner, D. J., SchengenDB: A Data Protection Database., VLBD Workshop Poly'19

Bringing Technical Rigor to Policy Debates

Che New York Times Voting on Your Phone: New Elections App Ignites Security Debate


f 🔉 🖌 🗖 🖊

New Hampshire residents voting in the presidential primary on Tuesday. A smartphone app could let some absentee voters this year cast ballots from home Alyssa Schukar for The New York Times

By Matthew Ros

In the new paper, the M.I.T. researchers, Michael A. Specter, James Koppel and Daniel J. Weitzner, go beyond speculation and detail how they found serious security issues by reverse-engineering Voatz's app and recreating what they could of the company's server from publicly available information.

Specter, Michael A., James Koppel, and Daniel Weitzner. "The Ballot is Busted Before the Blockchain: A Security Analysis of Voatz, the First Internet Voting Application Used in US Federal Elections." In 29th {USENIX} Security Symposium ({USENIX} Security 20), pp. 1535-1553. 2020.

Findings on mobile voting security

- 5 high-severity vulnerabilities & a serious privacy issue
- Many basic implementation failures, e.g.:
 - Mandated use of weak passwords
 - Anti-tamper/AV solution was easily circumventable
 - Sends a photo of user's ID, and location to a third party *without alerting the user*
- API Server has complete control
 - No proofs of inclusion (where's the Blockchain?)
 - Weak receipt validation, not E2E-V

Adversary	Attacker Capability								
riu versur y	Suppress Ballot	Learn Secret Vote	Alter Ballot	Learn User's Identity	Learn User IP				
Passive Network (§5.3)		\checkmark			~				
Active Network (§5.3)	\checkmark	\checkmark			\checkmark				
3rd-Party ID Svc. (§5.4)	\checkmark			\checkmark	\checkmark				
Root On-Device (§5.1)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Voatz API Server (§5.2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				

Future of Data: Engagement and Education

Tools: Engagement

The New York Times

A.I. Policy Is Tricky. From Around the World, They Came to Hash It Out.

Nicolas Miailhe, a co-founder of the Future Society, asking a question during a gathering of global policymakers last week at the Massachusetts Institute of Technology. Kayana Szymczak for The New York Times

The New York Times "All the News That's Fit to Print"

VOL. CLXIV ... No. 56.921 East Tradies for Tone NEW YORK, WEDNESDAY, JULY 8, 2015

Security Experts Oppose Government Access to Encrypted Communication

By NICOLE PERLROTH JULY 7, 2015

SAN FRANCISCO - An elite group of security technologists has concluded that the American and British governments cannot demand special access to encrypted communications without putting the world's most confidential data and critical infrastructure in danger.

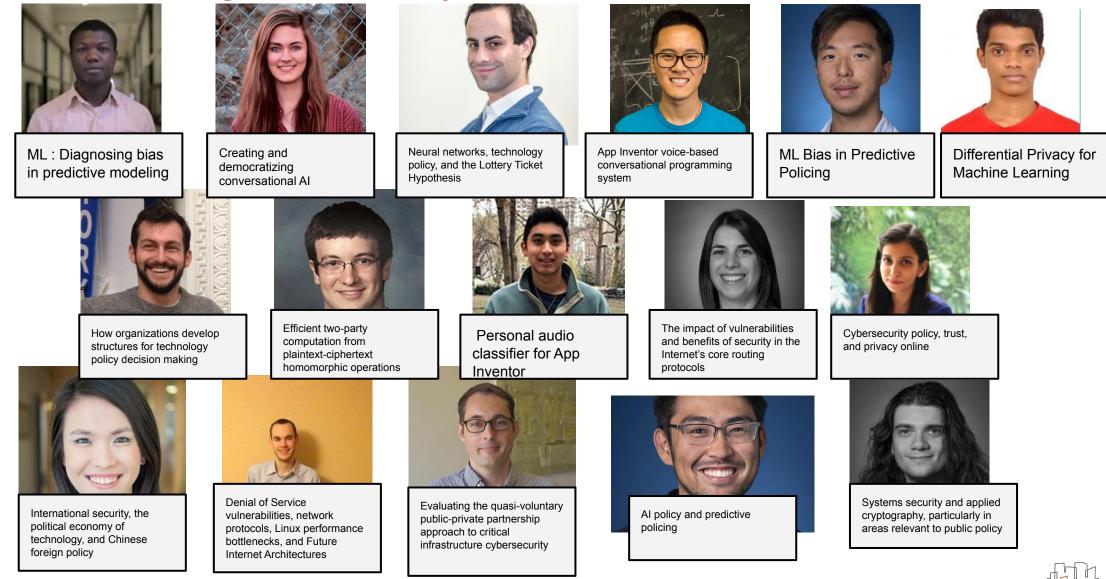
Al, the law, and our future

MIT "Policy Congress" examines the complex terrain of ar regulation.

Peter Dizikes | MIT News Office January 18, 2019

Scientists and policymakers converged at MIT on Tuesday to discuss one of the hardest problems in artificial intelligence: How to govern it.

The first MIT AI Policy Congress featured seven panel discussions sprawling across a variety of AI applications, and 25 speakers - including two former White House chiefs of staff, former cabinet secretaries, homeland security and defense policy chiefs, industry and civil society leaders, and leading researchers.



By Steve Lohr Jan. 20, 2019

Computing & Society CoR Student Research

MIT CSAIL

Internet Policy Research Initiative

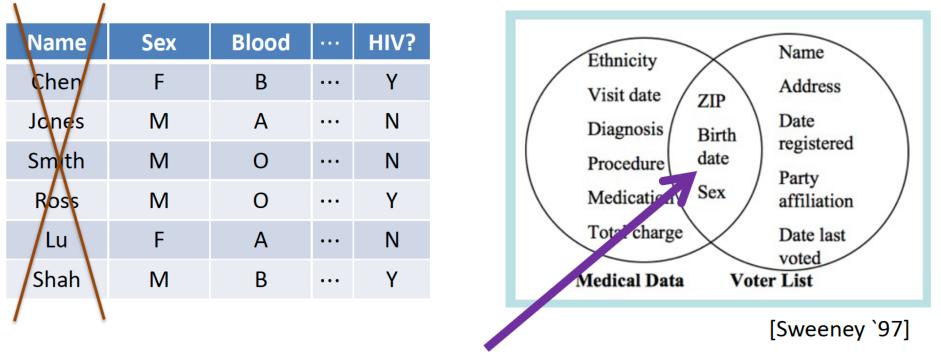
https://internetpolicy.mit.edu/

Techniques for Data Privacy: "Old" and New

Srini Devadas

MIT CSAIL

Motivation


- Being able to compute on private data is essential
- Many questions:
 - What is the privacy guarantee? Does it conform to applicable laws governing use and sharing of data?
 - What is the computational cost of "private" computation?
 - What is the utility or accuracy cost of "private" computation?
- Not surprisingly, there are many approaches with differing tradeoffs

Approach 1: "Anonymize" the Data

Name	Sex	Blood		HIV?
Chen	F	В	•••	Y
Jones	Μ	А	•••	Ν
Smth	Μ	0	••••	Ν
Ross	Μ	0	•••	Y
Lu	F	А	•••	Ν
Shah	Μ	В		Y
/ \				

Problems?

Reidentification via Linkage

Uniquely identify > 60% of the US population [Sweeney `00, Golle `06]

All it takes is a knowledge of a small number of attributes to identify/name the person!

Approach 2: Encrypt the Data

Name	Sex	Blood		HIV?	Name	Sex	Blood	••••	HIV?
Chen	F	В	••••	Y	100101	001001	110101	•••	110111
Jones	М	А	•••	Ν	101010	111010	111111		001001
Smith	Μ	0	••••	Ν	001010	100100	011001	••••	110101
Ross	Μ	0		Y	001110	010010	110101		100001
Lu	F	А		Ν	110101	000000	111001	••••	010010
Shah	Μ	В	•••	Y	111110	110010	000101	••••	110101

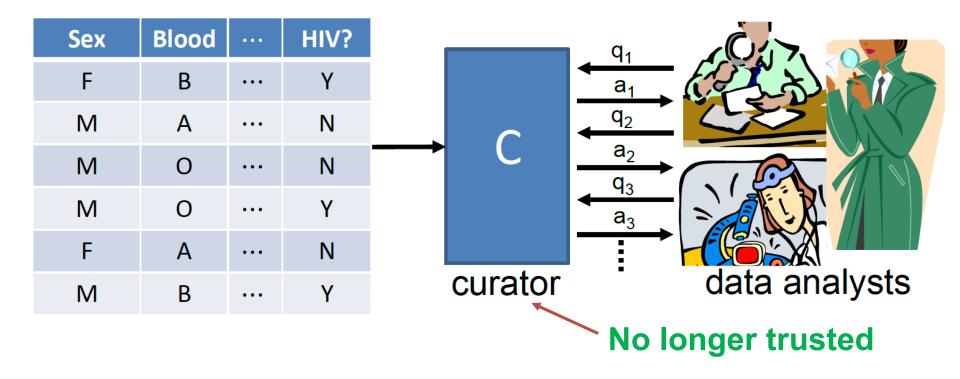
Challenges: How to search over data or compute statistics? How efficient/general is this?

Ongoing work on Fully Homomorphic Encryption and Secure Multiparty Computation

- Secure processors, such as Intel SGX, provide attested execution inside enclaves
 - Encrypted data from user is decrypted inside the enclave and processed

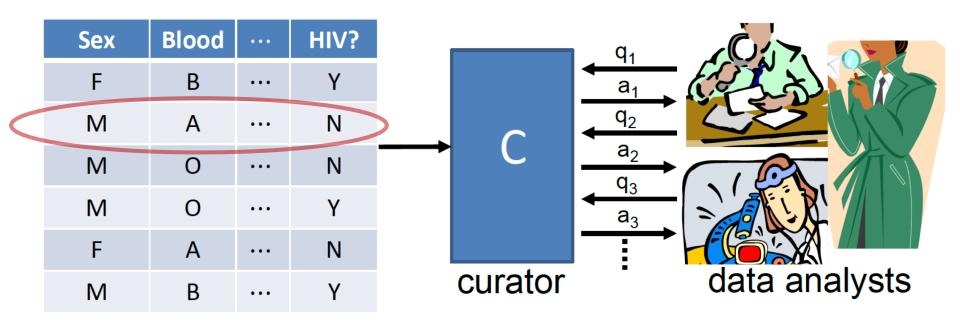
Challenges: Side Channel attacks! Spectre, Meltdown, Foreshadow, ...

Ongoing work on RISC-V based secure enclaves

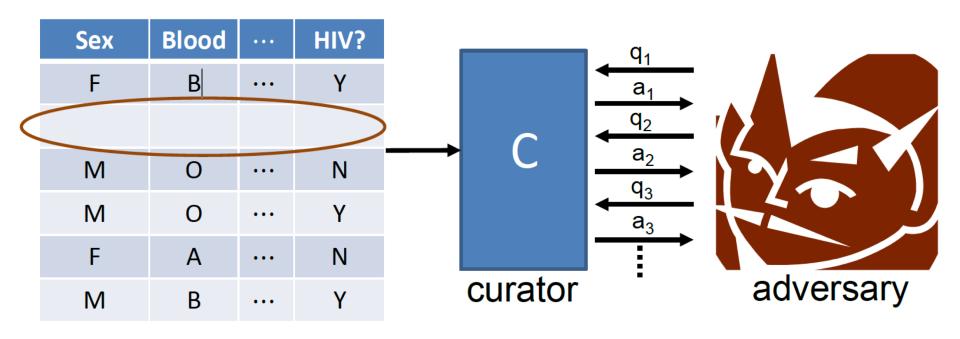

Approach 4: Mediate Access

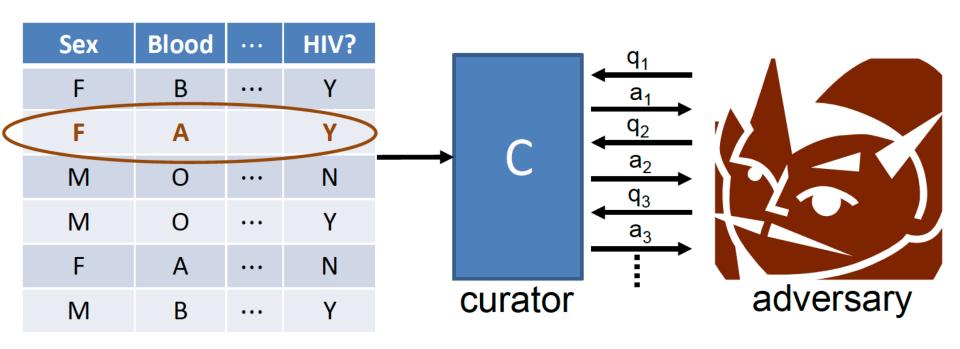
Name	Sex	Blood		HIV?	
Chen	F	В		Y	
Jones	Μ	А		Ν	$\begin{array}{c} a_1 \\ q_2 \end{array}$
Smith	Μ	0		Ν	\rightarrow C a_2
Ross	М	0	••••	Y	q_3
Lu	F	А		Ν	
Shah	М	В		Y	trusted data analysts
					trusted "curator"

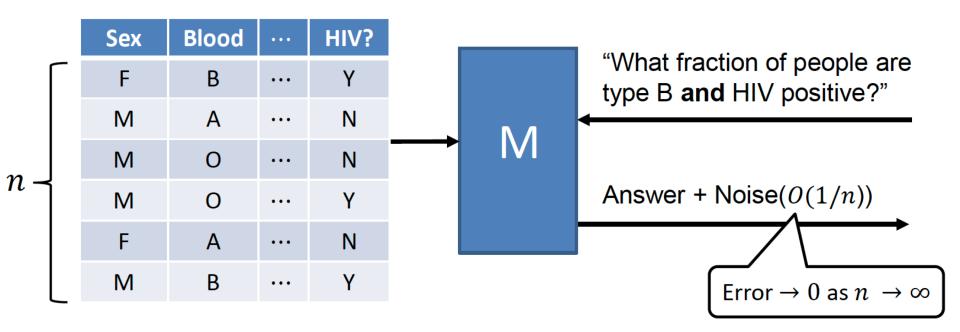
Problems: Curator sees all the data. What queries are allowed? How much do they leak?



Mii


 Requirement: effect of each individual should be "hidden"


 Requirement: Adversary should not be able to tell if any one person's data were changed arbitrarily


 Requirement: Adversary should not be able to tell if any one person's data were changed arbitrarily

 Requirement: Adversary should not be able to tell if any one person's data were changed arbitrarily

Simple approach: random noise

- Very little noise needed to hide each person as $n \rightarrow \infty$
- This is just for one query

Differential Privacy Deployed

Apple

The latest news and insights from Google on security and safety on the Internet

Learning statistics with privacy, aided by the flip of a coin October 30, 2014

Cross-posted on the Research Blog and the Chromium Blo

At Google, we are constantly trying to improve the techniques we use to protect ou users' security and privacy. One such project, RAPPOR (Randomized Aggregatable Privacy-Preserving Ordinal Response), provides a new state-of-the-art, privacy-

mostly focused on count and average statistics

- Accuracy for "small data" (small n)
- Modeling and managing privacy loss over time
- Analysts are used to working with raw data, not querying (slightly) noisy data
- Matching guarantees with privacy law and regulation

Significant work at CSAIL addressing these challenges

A New Data Transformation Approach

- Dataset X belongs to Owner
- Owner transforms X using a private transform
 T to T(X) and shares with untrusted entity U
- U learns model M based on T(X) and returns M to Owner
- To predict using M, owner queries M(T(x_{new}))
- Key questions:
 - How much does T(X) leak about X?
 - How accurate is M relative to model based on X?

Data Augmentation

- Mixup is a popular data augmentation strategy
- Given two samples X and Y, choose random r,
 0 < r < 1 and generate a new sample
 r X + (1 r) Y
- + Can increase the number of training samples
- + Data augmentation can hide private Y with secret r, even if one sample X is public

- How to choose the transform T so we can show a privacy property?
- What is the resultant utility of learning/computing on the transformed data?
- + One-time transformation of data is computationally efficient
- Positive preliminary results for Support Vector Machines, fully connected neural networks for transform with bounded leakage

- Being able to legally and efficiently compute on private data is essential
- This is a rich area of research with new technologies constantly being developed
- We look forward to working with you to address research challenges!