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Genetics: Ancient Foreshadowings è Mendelian traits è Polygenicity

9000BC: Selective breeding of animals/plants
Inheritance: Eye/hair color long understood

1866: Mendel: Discrete inheritance
No blending. Dominant/recessive alleles

Independent assortment

Biometrics: continuous phenotype variation.
Others: Saltationism, orthogenesis, vitalism, 
neo-Lamarckism, theistic evolution…

1913: Linkage/mapping, Morgan, Sturtevant
1980s: Mendelian Trait genes mapped

2000s: Human genome. Variation maps. 
Haplotypes. GWAS. Common/rare variants. 

1918. Continuous phenotype variation
explained by multiple Mendelian loci

Fisher



Dissect mechanisms of disease-associated regions

Start with disease genetics: 
Common + rare variants
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1. Profile RNA + Epigenome
in healthy + disease samples

Convolutional neural network model linking 
genome sequence to enhancer activity

A
C
G
T

One-hot
encoding

Convolutional
Layer

Max-pooling 
Layer

Fully-connected
Layer

Cell type-specific
prediction of 
Alzheimer’s-

associated mutations

2. Integrate data to predict driver 
genes, regions, cell types

3. Validate predictions in 
human cells + mouse models

Cell cultures Mouse models

4. Disseminate results



Step 1: Large-scale profiling (e.g. 1500+ brain samples, 20M+ cells)

Across brain regions (N=7+)

Frontal cortex
Cognition, 
personality, 
social behavior,
psychosis in AD

Hippocampus
Information consolidation, memory,
social behavior, psychosis in AD

Across cell types (n=75+)
Across individual cells (n=20,000,000+)

oligodendrocytesNeuronal support, myelination, growth factor secretion
neuronsInformation processing,transmission, memory

astrocytesRegulate chemical signals, recycle neurotransmiters, guide blood vessels
microgliaPrune synapses, protect neurons (injury/damage),immune processes

Across traits (N=12, each ~48)
Across individuals (N=1500)

Across scRNA (N=1000), scATAC (N=500)

• Alzheimer's
• FrontoTemporal
• LewyBodyDem
• ALS amyotr.lat.scl
• Huntington’s
• AD+Psychosis
• Schizophrenia
• Bipolar Disorder
• Down Syndrome
• Autism, PTSD
• Addiction, Aging
• Cardiac Disease
• Obesity, Exercise
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Step 2: Data integrationèdriver genes/regions/cells/pathways

Bayesian multi-trait GWAS integration

Predict causal variants and cell types

Causality inference, MediationConvolutional neural network model linking 
genome sequence to enhancer activity
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CNNs: Predict function from seq



Step 3. Manipulate circuitry è reverse disease phenotypes

Obese

Lean

C-to-T è Lean
T-to-C è Obese

Decrease IRX3, IRX5 è Lean
Increase IRX3, IRX5 è Obese

Incr. ARID5B è Lean
Decr ARID5BèObese

CRISPR-edit human fat cells
è able to burn calories again

IRX3 KD è Burn calories in their sleep
è 54% weight loss. Can’t gain weight



EpiMap: 834 tissue/cell types è 30k GWAS SNPs in 534 traits

127 Epigenomes 
(Roadmap 2015)

834 Epigenomes 
(EpiMap 2019)

54 enriched GWAS
traits (2015)

534 enriched traits

30,247 SNPs in 
enriched enhancers
èHighly-specific
associations Emerge
è Precise biological
hypotheses on
mechanistic basis

Tissue enrich/co-enrichments è trait clustering, trait-tissue network

Carles Boix, 

Boix et al, Nature, 2021



Single-cell profiling across 1400+ brain samples, 5M+ cells

scRNA-seq in 48 individuals: cell type diversity

Phenotypic diversity across individuals

AD vs. non-AD subgroups in each cell type

OligodendrocytesExcitatory neurons

• Somatic mutation burden clusters in Golgi,
vesicle trafficking, intermediate filaments

With Li-Huei Tsai
Mathys, Davila et al
Nature, 2019



1.6 M cells across 7 regions (48 indiv./region)

Glial cells vary (eg.astrocytes)Inhibitory neurons varyMarkers for 30 Exc+23 Inh neuronal subtypes

Spatio-temporal AD progression across brain regions, cells, genes, pathology

AD progression across regions, time, cells, genes
Timecourse of AD progression pseudotime

Carles Boix,
Hans Mathys, 
Kiki Galani,
Li-Huei Tsai Boix, Mathys, In preparation



snRNA profiles capture hippocampal sub-regions
Captured sub-regions across individuals AD discriminatory ranking

DG=granule cells

Subi=pyramidal

pyramidal cells

granule cells

a. Spatial ‘bulk’ expression clustering

Control Disease (SCA1)

b. Spatial ‘bulk’ Ppp1r17 gene marker

c. Deconvolved Purkinje cell proportion

d. Spatial single-cell deconvolution (CDseq)

e. Deconvolution reveals disease-specific changes

• Train deep-learning model to predict spatial positioning 
information for single-cell data from expression patterns

• Recover neuronal layer information, well-recognized 
information

• Astrocytes and oligodendrocytes also show spatial positioningSpatial transcriptomics single-cell deconvolution

Deep Learning for Spatial Transcriptomics + Single-cell Integration

Spatial + single-cell possible, but slow, scarce, expensive

Na Sun, Djuna Von Maydell, 
Guillaume Leclerc, Fatima 
Gunter-Rahman

Jose Davila, 
Hansruedi
Mathys, 
Li-Huei Tsai

Kai Kang, 
Kiki Galani,
Myriam
Heiman

Davila et al, In submission

Kang et al, In preparation Van Maydell, Sun, et al, In preparation



Sub-cellular transcriptomics, single-cell RNA, and imaging in heart: Coronary Artery Disease



Deep Learning transformers across modalities: 
scRNA, scEpigenomics, Imaging, Phenotypes



Modular and programmable CRISPR-Cas9/dCas9 system

• Activation: CRISPR-dCas9+p300
• Repression: CRISPR-dCas9+KRAB
• Editing: CRISPR-Cas9 + repair template
• Knockout: CRISPR-Cas9 cutting

AD: Bin1 enhancer activation
with multiple sgRNAs

Apply in iPSCs, differentiate into NPCs, neurons, 
astrocytes, oligodendrocytes, microglia

Modularity:
• Pick perturbation type (3 lines)
• Pick cell type (differentiation)
• Pick target (sgRNA + repair template)
• Induce (Dox/Tet control)
• Environmental modulations (+Aβ)
• Cross-cell-type effects (2D/3D co-culture)

Maria Kousi, Michael Gutbrod, In preparation
Collaboration with Li-Huei Tsai, Kevin Eggan, Nikos Daskalakis et al



Ultra-high-throughput assays: 7M tests + high-res

ATAC selection è No synthesis è 7M tests
3’UTR incorp.è Self-transcribeè No barcode

Dense, random start/endè Region tiling

High-resolution inference of driver nucleotides
èExploit differences between neighboring fragments
èDriver nucleotides match motifs, evolut. conservation

Xinchen Wang, 
Nature Comm, 2018



Genomics + EHR integration across 1M+ patients

Multi-modal hierarchical Bayesian 
NMAR model (MixEHR)

Integrate ICD9, DRG, lab tests, 
prescriptions, doctor notes

Learned topics cut across EHR data types, 
enable imputation, completion, correction

Integrate w/ eQTL-based expression
è genes/cells of action for complex traits

Yue Li, 
Andy Shea, 
Nature Com.

Maria Kousi, Michael Gutbrod, In preparation
Collaboration with Li-Huei Tsai, Kevin Eggan, Nikos Daskalakis et al



Disease hallmarks: patient subtyping & personalized medicine

•Pathway-centric disease heterogeneity
•Each patient: pathway-specific burdens

Inspiration: 
Cancer Hallmarks

Tx Hallmarks: 
Palette

Patients: Hallmark comb.
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•30 Transcriptional hallmarks: distinct pathways èDistinct painting of each patient

•Distinct early- vs. late-AD Hallmarks •Tx Hallmarks èDistinct patient subgroups èDiagnosis & Prognosis è Treatment

Yosuke
Tanigawa



Death by Round Numbers and Sharp Thresholds: EHR and AI mining
Expectation Data-Driven Reality

• Generalized Additive Models (GAM): 
Flexible Glass-Box Models
• Decompose each variable into its drivers

= + +

Ben 
Lengerich

"Explainable
Boosting
Machines",
[Caruana et al 
2015]

• GAM with Boosted Trees
• Deal with sharp thresholds

• Elevated creatinine è indicator of renal failure, 
so expect mortality risk to increase w/creatinine
• In practice, much more complex curve: many 

discontinuities, sharp thresholds, round numbers
• Reason: round thresholds trigger treatment 

interventions that lower risk
• Naïve AI model: would recommend increasing 

creatinine levels to reduce mortality risk: Death!

3 5

• Goodheart Law: “When a measure becomes 
a target, it ceases to be a good measure”
• EHR: “When a biomarker leads to treatment, 

it ceases to be a good biomarker”



Multi-tissue effects: Impact of exercise + obesity

• Single-cell Multi-Tissue effects
• Exercise rewires your metabolic tissues to burn 

more calories
• Stem cell reprogramming, cell-cell 

communication, immune processes

Yang CellMetabolism 22



Network-level therapeutic development
Connect TFómotifóSNPóenhancerógeneóCellTypeóproteinódrugópathwayódisease

Henry Herce
Brad Pentelute
Marinka Zitnik

Leverage large-scale training data for drug design

Deep Learning Models Molecule Synthesis

Multiple therapeutic modalities. E.g. IRX3
Target: Protein, target sites, enhancer, RNA



ØMy own family: Obesity, cancer, stroke, diabetes
ØMy own predispositions: obesity, blindness, cancer.
ØGenetics: Each of us in this room carries mutations
ØEnvironment: pollution, nutrition, sedentary lifestyle
ØSystemic disorders: obesity, diabetes, cancer, heart
ØPathogens: infections, immune dysregulation, cancer
ØLifespan: Alzheimer’s, new diseases

Disease still reigns

ØCS: ML, DeepNN, DNA code, circuitry, big data
ØBio: High-throughput profiling + manipulation
ØChemistry: Libraries, synthesis, modularity
ØBiotech: New technol. for rewiring, delivery
ØFinance: long-term 10-year 20-year ‘biobonds’ 
ØPharma: partnership, pre-competitive sharing
ØPatients: empowrmnt, personalization, sharing
ØHospitals: combine cohorts, increase power

Call to action: CoalitionTransforming pharma

• Always surprised è Prognosis: Mendelian, Polygenic Scores
• Misdiagnosis è Better biomarkers, Multi-modal diagnosis
• Treat manifestations è Address root causes, causal hallmarks
• Monolithic: AD,T2D,Cancer è Heterogeneity: symptoms+causes
• Monolithic: AD è Understand components: Ab, tau, infl, lipids
• Silos: tissues, departments è Interplay, commonalities, sharing
• Treatment too late è Preventive personalized interventions

ØPolygenicity: Thousands of variants
ØConvergence: Small number of common pathways
ØHallmarks of disease: causal pathways
ØManipulation: reverse disease circuitry 
ØIndividualized treatment: combine pathways
ØEach Patient: different combination 
ØBurden: Accumulation of pathway perturbations
ØOmics: Genetic, epigenomic, transcript, proteomic

Personalizing Medicine



The role of CS+AI in Transforming Medicine
• Computational programming language of the genome
• Systems-level interventions for rewiring cellular circuitry
• Information-theoretic prioritization of experiments
• Genomic transformation of food production/resilience
• Design organisms that use CO2 for energy production
• Understand/reverse pseudotime progression of aging
• Brain information storage, HCI direct information transfer
• Brain-inspired new deep learning cognitive architectures
• Million-fold multiplex perturbations and measurements
• Hardware acceleration, compressed computing
• Robustness-first programming/robotics paradigms
• Evolution/Evolvability-first system design paradigms
• Complete multi-modal understand. of EHR/medical state
• Design of new proteins/drugs/therapeutic structures
• Cracking & reversing circuitry of Alzheimer’s, Obesity, 

Psychiatric, Cardiac, Immune, Cancer, all of disease
• Representation learning as a window to artificial 

intelligence
• Systems-level understanding of biological functions and 

processes



18 active grants on Alzheimer’s, 
schizophrenia, bipolar, cancer, 

metabolism, immune, ALS, aging, Down 
syndrome, single-cell profiling, disease 

dissection, genetics, epigenomics, 
sequencing, and many more...

(e.g. $23M as of in Spring 2022)

Group alumni now profs at 
CMU, Stanford, McGill, 
Harvard, UCLA, U.Conn, UMD, 
Johns Hopkins, UC Irvine, UC 
Davis, EPFL, UC Boulder, 
Harvey Mudd, Vienna IMP, 
Barcelona CRG, Baylor College 
of Medicine, MD Anderson…

40 Nature papers
14 Science papers
75 NatureFam papers
151 Papers w/ IF>10

Journal Impact Factor Papers
New England J of Medicine 70 1
Nature IF=43 N=40
Science IF=41 N=14
Nature Biotechnology 36 9
Cell 36 4
Nature Methods 28 4
Nature Genetics 27 9
Nature Neuroscience 21 3
Mol Biol Evol 15 4
Genome Res 14 28
Genome Biol 13 8
Nature Struct. Mol. Biology 13 1
Nature Communications 12 13
Nucleic Acids Research 11 11
PNAS Proc. Nat. Acad Sci 10 7

Quantifying 
Impact: 

Alumni, 
publications, 

citations, grants

19,000 citations/year
130,000+ citations
h-index: 129
I10-index: 277



So come to MIT/CSAIL/CompBio – and join us! :-)

Big Data
+ Machine Learning
+ Experimental Validation
è Impact + Fun!

compbio.mit.edu – Prof. Manolis Kellis



CSAIL faculty with research programs in CB span 
many areas: ML, AI, Vision, Theory, Systems, 
Languages, Architecture, Computational Biology. 

ML

Vision

Neuroscience

Genomics

SynBio

Medical

Proteomics

And more



P. Sharp 2015 Science

MIT

Flagship Ventures

Rubius

Pharma/Biotech surrounds MIT - Lo
(many started by MIT faculty + trainees)

Prof. Philip Sharp, 2017, modified by H. Sive
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MIT


