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. Introduction . Results . Definition of Bias

Women are paid less despite being more likely to hire them and perceiving them as more qualified.
To ensure a comprehensive understanding of bias within our experimentation, we have

Recent advancements in large language models (LLMs) have transformed them into indispensable
established a precise definition.

tools across diverse domains. However, the persistent challenge of mitigating biases in training data Hire Results - fomaie Q lified R It = fomae
has led to the manifestation of substantial biases in many LLMs (Gallegos et al., 2023). Leveraging o siary ualine ESults — o T
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endeavors to investigate biases within LLMs specifically in the context of hiring practices. 1.00 9.00 Compensation} and the demographic division D from {female, male, non-binary}.
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One seminal study in societal bias, Bertrand and Mullainathan's investigation, "Are Emily and Greg g = g = s . e Assume the outcome samples for the experiments regarding a feature F are represented
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methodology utilized in societal bias studies. 1.00 9.00 o :
- - Dj given the feature we compare them on (e.g., b() is a p-value test).
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5 _ o Distribution of Compensation by Gender We used the following comparison metric for the function b(Di,Dj)):
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2592 — - for F=Qualified, and the Kolmogorov-Smirnov two-sample test for F=Compensation as the p-
. . 4 im
Female: Male: ) é:/:;le-) 0.1 value test.
enie | [y 2 25
e |\ (she/her osl
_— « Non-Binary:
(they/them) 25 Prompt Perturbations: - o3
Gendered Names Names with Pronouns v 3 aal
. ) ' .
\“‘ 1,’/ Baseline Prompts: = gé N . Conclus10n
~ 7 o
Name: Would you hire this
candidate? -
- ) ; " ; e ey Y ; 7 TP ; TR e ; i ; 3 Our primary contribution throughout this research has been defining a metric to quantify bias
Baseline Standardized Compensation Distribution and comparing this metric across LLMs. Our results show that most models tend to perceive
RESUMES women as more qualified and are more likely to hire them but will still recommend a lower
How qualified s this ; compensation. We encourage future research using names as a proxy for race and other
candidate from 1-10 ] Our results suggest that requesting the model to consider Diversity, Equity, and Inclusion (DEI) factors in its decision-making process, or to articulate its rationale, is insufficient to fully mitigate bias. groups as opposed to just gender and exploring bias beyond the use case of hiring.
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