
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

This study uses large language models (LLMs) to 
predict clinical trial outcomes based on patent data. A 
rich source of early-stage drug information, this data 
was analyzed via an LLM to forecast the outcomes of 
clinical trials in phases 1 through 3. Preliminary results 
indicate that the patent data's predictive strength 
increases with each trial phase (AUC-ROC of 0.60 for 
phase 1, AUC-ROC of 0.72 for phase 3). This suggests 
that investors can assess financial risk based on 
findings from the preclinical stage, making therapeutic 
development a more attractive investment and 
bringing more capital into the sector. LLMs offer a new 
platform for risk mitigation and investment decision-
making in the biopharma industry.
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Related Work
Machine Learning with Statistical Imputation for
Predicting Drug Approvals (Lo, Siah, and Wong 2019)
• 140 features (without patent data)
• 15 disease groups
• 0.81 AUC

Drug Approval Prediction using Patents (Kamijo et al. 
2023)
• Patent feature extraction with natural language 

processing (NLP) (without LLMs)
• Use first 512 words of Abstract, Claim, Description
• 0.8 ~ 0.9 F1 score

Novelty of the Work
• Employs an LLM for both patent summarization 

and feature extraction
• Predicts probability of transition between clinical 

trial phases

Google US patent data

Methods

We have developed a prediction model that can 
predict clinical trial phase outcomes by analyzing 
patent data using an LLM.

Next Steps
Re-run the model with an extended dataset—beyond 
the ~7,500 patents and drugs utilized in this study—to 
generate more comprehensive results.

Prediction Model

Data Preprocessing

Data Statistics
• 7,527 Patents

― 42% Launched
― 17% Phase 2
― 9% Phase 3
― 6% Phase 1

• Biased towards higher phases (i.e., biased more 
towards success than failure)
― Evaluation metric should be bias-aware

• Average length: 9,640 tokens (up to 38,000 
tokens)
― Need to be summarized in under 4,096 tokens 

to be an input of LongFormer model

Performance Evaluation

F1 Score 
Benchmark: 0.8~0.9
(Kamijo et al. 2023)

AUC-ROC
Benchmark: 0.81
(Lo et al. 2019)

Phase 1
F1 Score: 0.96
AUC-ROC: 0.60

Phase 2
F1 Score: 0.84
AUC-ROC: 0.66

Phase 3
F1 Score: 0.90
AUC-ROC: 0.72

Web-crawling for 
<abstract, description> 

sections 

Preprocess, Tokenize

Summarize to 
4,096 tokens

(Distilbart-CNN Model)

Extract Feature
(LongFormer Model)

Citeline™ clinical trial data

Extract phase 1, 2, 3
success/failure data

ML model 
(Gradient boosting, NN, 

Random forest, Logistic regression)

PCA

• Sections: Abstract and Description
• Abstract: Relatively short (~100 tokens), contains 

important information
• Description: Long (~thousands of tokens), 

summarization required for feature extraction

Abstract Description

Summarized 
Description

Distilbart-CNN

Summarized Patent

Feature Extraction

• Summarized patent is processed with pre-trained 
LongFormer model

• Feature extracted from the last layer of the 
model

• 1,024 features are converted into 32 features with 
principal component analysis (PCA)

Results
F1 Score/AUC-ROC
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