
A Reconfigurable, Distributed Memory Accelerator for Sparse Applications
Courtney Golden (MIT CSAIL), Joel S. Emer (MIT CSAIL / NVIDIA), and Daniel Sanchez (MIT CSAIL)

{cgolden, emer, sanchez}@csail.mit.edu

Motivation & Background Programming Model Hardware Architecture

Task Structure:

We convert
cascades of

Einsums into tasks

by encapsulating

data partitioning

across tiles and
then grouping

operations that

occur on the

same tile.

receive input from network
and/or

read local data from storage

compute
on data

write data to local storage
and/or

send data over network

Arithmetic Intensity

Th
ro

u
g

h
p

u
t

Characteristics of Scientific and Graph Workloads

1. Iterative
2. Highly sparse

3. Static and dynamic

sparsity

4. Low intra-iteration

arithmetic intensity

Einsum Notation

Shortcomings of Prior Work

Prior all-SRAM architectures overcome the memory
bottleneck but suffer from low programmability or low

compute performance.

output tensor
input tensors

rank names

rank-2 tensor

index into rank M generic dot operator

strictly partitioned

shard partitioned

duplicate partitioned

Ex: SpMV

1. SendColumnVal
2. ScaleColumn

3. SendPartialSum

4. UpdateRowSum

4 Task Types:

Data Partitioning

Partitioning data across distributed memories has a large
performance impact because it directly determines network

traffic and load balance.

Objectives for data partitioning:
1.Load balance work among tiles

2.Minimize inter-tile communication

We partition data at a single-element granularity, allowing
any nonzero of any tensor to be placed at any tile.

co-locate elements
in the same row

co-locate elements
in the same column

spread elements
equally among tiles

1. Identify data that are likely to be used in the same iteration
and place into clusters.

2. Independently partition each cluster over tiles, minimizing

intra-cluster communication.

Results

Speedup
(gmean):

26.2x

Area per

chiplet:
450mm^2

Power per

chiplet

(gmean):
24.3 W

Our tiles are designed to efficiently execute short, dataflow tasks using
reconfigurable logic. We exploit problem structure and data partitioning to

support a few key sparse primitives needed for scientific and graph workloads.

	Slide 1

