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Score Distillation Sampling (SDS) [1] is a promising technique that allows to use
pre-trained 2D diffusion models for 3D generation. However, the quality of the
generated 3D assets is limited. In this work we:

&~ Theoretically show that SDS = 2D Diffusion

Reveal that the noise term in SDS is the reason for over-smoothing
K Suggest a fix

Improve the quality of 3D generation

2D Diffusion (DDIM) Ours (SDI)

Score Distillation (SDS)
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Score Distillation Sampling
uses Image Diffusion, but
the results are blurry

Image Diffusion generates

: . 9¢! We provide a theoretical
crisp, high-quality images

analysis and suggest a fix

How does Score Distillation work?

Proposed in DreamFusion [1] and Score Jacobian Chaining [2], Score Distillation is
a method for generating 3D shapes using a pre-trained and frozen 2D diffusion
model.

I. Initialize a differentiable 3D representation
Sample a random camera pose &éi

Render a view of the object =

. Add noise to the rendering

Denoise the image with the 2D diffusion model
Optimize the parameters of the 3D representation to match the denoised

image @
II. Repeat steps 1-5 until convergence
Often the generated shapes are over-smoothed and over-saturated.
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SDS is a dual process
of DDIM

A single upate step of Denoising Diffusion
Implicit Models (DDIM) [3] sampling algorithm
removes a portioin of the predicted noise to
match the noise level of the next step:

Z(t —7) = Z(t) + € (\/ a(t)z(t), y) lo(t— 1) —o(t)].

Let’s consider a new variable that is formed by denoising the images in a single step:

vo(t) £ 2(t) — o()ch (2(1), ).

With a simple change of variable in the DDIM update rule, we obtain a dual process of
DDIM defined for the space of noise-free images:
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,where ﬁly IS a noise term added to the current image. For the new process to match

DDIM exactly, it should satisfy the following stationary-point equation:

ky = ep(Va(t)zo(t) + /1 - a(t)x},y)
Solving this equation precisely is very hard as it involves inverting a higly non-linear

and high-dimentional Neural Network. A naive solution that we can adopt is to
sample the noise term randomly from the Normal Gaussian distribution.

Ky ~ N(0,1)

In this case the re-parametrization of DDIM precisely matches SDS update rule!

Random noise is the reason of blurriness
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process is being averaged acrross multiple trajectories of 4 .
DDIM, what causes Dbluriness. In this work we explore \ iy hy
multiple approaches to solving the stationary point equation " W
and find that running DDIM in the inverse direction yields Z,

the most accurate solution. In this case Score Distillation <
optimisation process becomes time- and spatial-consistent. 1 >

3D generation quality gets closer to 2D models

“photograph of a black “a DSLR photo of
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See the paper for detailed comparisons with ProlificDreamer, Noise-Free SD,
HiFA, Lucid Dreamer, and other amazing works in Score Distillation
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