
Exploiting Sparsity to Design An Accelerator for Automata Processing

Introduction and Background

Xingran (Maggie) Du, Joel S. Emer, Daniel Sanchez {xrdu, emer, sanchez}@csail.mit.edu

ArchitectureOur Approach Evaluation

Input symbols are streamed from the host system while
automata are stored on-chip. Reducing automata storage
can reduce the number of batches needed for processing
the whole workload, improving throughput.

Each automaton is represented as a graph.
Graph nodes match against the input symbol, and
activate their neighbors.

The adjacency matrix is sparse, but prior work
inefficiently store it uncompressed.

• Each graph node only has 1 to 2
neighbors (1 to 2 non-zeros
(black dots) per row)

• 200 nodes take 200x200 bits to
store uncompressed, while only
having 400 non-zero elements,
causing storage inefficiency

We use compressed format in addition to
uncompressed format.

We design a hybrid system to make the common
case fast, and the uncommon case cheap.
• Hare units use uncompressed format to

provide high-throughput for frequently
accessed nodes

• Tortoise units use compressed format to store
the remaining nodes efficiently, with lower
processing throughput

• Tortoise units rarely interrupt Hare units and
slowdown execution

Key Contributions

• We frame automata processing as sparse
computation, and analyze its optimization
opportunities

• We design an automata processing accelerator
that extensively exploits sparsity in automata
graphs

• We propose a novel approach that combines
uncompressed and compressed
representations to achieve both high
throughput and high space efficiency

• We evaluate these techniques in depth,
showing their performance gains

We evaluate our system on the AutomataZoo
benchmark suite and achieve 2.5x and 2.2x
speedup over prior accelerators.

System Diagram
Only local communication is needed within
and between Hare and Tortoise units.
Units are laid out in columns and replicated
in the vertical dimension.

Hare Unit Design
Only storing frequent nodes allows Hare
units to be more efficient even with
uncompressed format.

Small uncompressed blocks are composed
diagonally to store a full adjacency matrix.

Interconnect to Host System

Input Symbol
Global Buffer Report Buffer Reconfiguration

Control

H H H

H H H
H H H

H H H

T

T

…

M

M

M
Input Symbol
BufferM

M M

M M

M M

… …
…

Match Sets Hare units Tortoise units

