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MESSAGE from the EXECUTIVE DIRECTOR

Welcome to SystemsThatLearn@CSAIL!

SystemsThatLearn@CSAIL (STL) is MIT’s AI research initiative in collaboration with industry.  As a member of this initia-
tive you will have a voice in shaping the research, access to the most cutting edge technologies developed in the space, 
close collaboration with world-renowned researchers and connections to top student talent. 

Each member has 1 board position on the SystemsThatLearn@CSAIL governing board. The board consists of member 
companies, researchers, the faculty directors and the executive director. The board meets and frames problem statements 
on issues relevant to our members. The problem statements are then crafted into an RPF which is sent to the entire lab 
(117 researchers). The proposals are then gathered and reviewed by the member company representatives and voted on 
for funding allocation. Details of the structure of the executive board are included in this packet. 

More broadly, SystemsThatLearn@CSAIL is a research initiative under the management of CSAIL Alliances, the division 
of CSAIL that manages industry and organizational collaborations. CSAIL Alliances also manages the CyberSecurity@
CSAIL research initiative, the CSAIL Alliance Program, the Visiting Industry researcher program, student recruiting activ-
ities, CSAIL Start-up Connect and professional development programs. As part of SystemsThatLearn@CSAIL you have 
benefits in each of these areas. Details are included in the Benefits Grid in this packet. 

We hope you find this information useful. If you have any questions, I would be happy to answer them.

This year our general Alliances Annual Meeting will take place June 5-7, 2017, at MIT. This event will showcase the latest 
research from across the lab, as well as demonstrate some of our emerging technologies. You will also have an opportuni-
ty to meet some of our start-ups coming out of the lab, as well as meet CSAIL students at the poster reception. This event 
is a great opportunity to connect with the staff, students and research at the lab. The Annual Meeting site is currently avail-
able and open for registration: cap.csail.mit.edu/annualmeeting. You must be logged into the CSAIL Alliances website to 
access the page.  Admission is part of your membership in STL@CSAIL and Alliances and there is no limit to the number 
of people your company can send. We hope you will be able to attend. 

Also, this year we are taking part in the second annual Cambridge 2 Cambridge (cambridge2cambridge.csail.mit.edu)  
international cybersecurity challenge with the University of Cambridge in the UK. This event consists of a hackathon that 
will bring together top students from the US and UK. The event will take place at the University of Cambridge on  
July 24-27, 2017. The hackathon is an open event and we encourage you to attend. 

If you have any questions or comments, please do not hesitate to contact me.  

Sincerely,

Lori Glover

Executive Director, SystemsThatLearn@CSAIL
Managing Director, MIT CSAIL Alliances

stl.csail.mit.edu | cap.csail.mit.edu/Resources
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LEVERAGED RESOURCES: EXISTING PROJECTS
Member companies will have access to research and testing opportunities in several current non-industry sponsored 
projects at CSAIL, as well as provide guidance for new seed projects as part of the collaborative initiative.

THE MEMBERSHIP MODEL:
Through initiatives, member companies engage in close interactions with researchers and students in the space. 
Member companies will have the opportunity to interact with multiple research projects that span the full spectrum 
of machine learning/artificial intelligence and analytics. We will collaborate closely with industry to provide real-world 
applications and drive impact. Our team of world-class researchers covers the full spectrum of research in systems and 
machine learning.

Systems That Learn @ CSAIL industry partners will:
• Participate in the Systems That Learn @ CSAIL Advisory Board. Each member company will have one (1) represen-

tative on the board. The board will advise the initiative on industry needs, provide feedback on existing research and
advise future research direction through seeded projects. This board will help shape the priorities of the initiative.

• Access in-depth exploration of CSAIL research in AI, machine learning and data analytics. As part of this initia-
tive, we will leverage the work of 15+ existing research projects. Members will have unprecedented access to the
research and the research teams.

• Test application of tools developed to real-world situations and explore new projects.

• Access tools created as part of the initiative via MIT open source license through the CSAIL Technology Application
Portal.

• Participate in in-depth interactions and shared learning on topics of particular interest to each company. Close inter-
action with the researchers engaged in what matters most to your company.

• Members will be invited to attend one (1) annual meeting per year and may send up to 10 representatives to enable
broad exposure to teams who are working on these issues. Members will also be invited to participate in the Sys-
tems That Learn @ CSAIL lecture series and workshops held throughout the year.

• Access additional research groups, researchers, and students within MIT’s Computer Science and Artificial Intelli-
gence Laboratory through CSAIL’s Alliance Program (CAP) at the Affiliate level. Details include:

• Access to the lab-wide annual 2-day member only Annual Meeting held in May/June each year in addition to Sys-
temsThatLearn@CSAIL Annual Meeting.

• Connect with the latest CSAIL research from across the groups: Big Data, Wireless, Robotics, HCI, Computer Vi-
sion, Security/Crypto, Natural Language, Computational Biology, Algorithms, Architecture, Theory, Artificial Intelli-
gence and Machine Learning.

• Access technical talks from our world-renowned researchers and visiting researchers held on campus each month
both live and virtually.

• A “Student Profile Book” containing resumes and research summaries of current CSAIL students published each
year.

• Advertise open position announcements within CSAIL

(continued)
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THE MEMBERSHIP MODEL (cont.):

Systems That Learn @ CSAIL industry partners will be able to:
• Have two tech talks/info sessions per academic year.

• Have your ompany logo included on CSAIL Alliance Program site and in conference material

• Have members of your company are welcome to visit CSAIL for a private lab visit, tour, demos and meeting with
faculty/researchers (1 per year).

• Network with faculty, students and other members at networking events throughout the year.

• Fully access the member-only site with search function: papers, student projects, resume book, research, tech talk
and seminar videos, demos, conference slides, business use cases and more

• Obtain a 10% discount on professional education classes through MIT school of Engineering.

• Obtain a 15% discount on open enrollment executive education courses with MIT Sloan School of Management.

• Receive research briefings/ and/or research summaries highlighting the latest CSAIL research 3-4 times per year

OPTIONAL ADDITIONAL ENGAGEMENTS:

In addition to accessing the existing research and shared learning on specific topics of interest, each member company 
may also enter into company–specific activities such as: 

Sponsored Research 

If a member company becomes interested in a particular research project and wants to sponsor future development of 
that project, we can work with members to scope the project and additional funding required. All sponsored research is 
handled through MIT’s Office of Sponsored Programs. 

Visiting Industry Researcher (with or without sponsored research) 

Member companies will be able to leverage the CSAIL Visiting Industry Researcher Program to embed a researcher 
within a specific research group. The visiting researcher remains an employee of the member-company and works 
alongside the researchers and students in a specific area at CSAIL. In addition, the Visiting Industry Researcher is 
connected to CSAIL/MIT with a customized schedule of lectures, workshops, classes, meetings and events. The CSAIL 
Alliance Program coordinates this effort and meets monthly with all Industry Visitors. 

Consulting 

Researchers may be available for consulting opportunities with our industry partners. Consulting agreements are 
arranged between the researcher and the member-company directly.

Technology Licensing

Member companies interested in licensing developed software and patentable inventions may work with our MIT Tech-
nology Licensing Office (TLO) for licensing agreements and options. 
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INTELLECTUAL PROPERTY:

The goal of SystemsThatLearn @CSAIL is to conduct fundamental research that will significantly impact the field of 
artificial intelligence and machine learning over the next decade and beyond. 

Publication 

The majority of the research results will be broadly disseminated via publication. We realize that confidentiality is a 
particular concern to our partners and we have standard practices to ensure no partner’s proprietary information will be 
released in any publication. Papers generated from this research initiative will be available to our partners BEFORE any 
publication and in parallel with conference submission. 

Open-Source and licensing 

Members will be able to utilize software tools developed through this initiative for research testing internally. Additionally, 
we anticipate that some of the software tools developed will be released as open source and available for use by mem-
ber companies via MIT’s open source license.

Member Intellectual Property 

All pre-existing IP owned by the member coming into this initiative will remain the member’s intellectual property. 

Creation of Joint Intellectual property 

If member representatives work with MIT researchers on projects to invent and/or author inventions and software, US 
laws and rules with regard to joint-ownership of patents and copyrights will be applied. Please note, however, if mem-
bers make significant use of MIT resources, funds, and/or facilities or invent in area outside the scope of initiative proj-
ects, their IP rights will be assigned to MIT. 
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SYSTEMSTHATLEARN@CSAIL GOVERNING BOARD

Each member company will have one representative on the board. The board will 
advise the initiative on industry needs, provide feedback on existing research and 
advise future research direction through seeded projects. This board will help shape 
the priorities of the initiative.

Steve Whittaker 
Head of Strategic US Academic Research Partnership 
British Telecommunications PLC (BT) 

Surajit Chaudhuri 
Distinguished Scientist
Microsoft Corporation 

Christopher White 
Research Lab Leader
Nokia Bell Labs

Hernán Asorey 
Senior Vice President, Product Data Science 
Salesforce.com

Smaine Zeroug 
Research Director
Schlumberger-Doll Research

Lori Glover 
Executive Director 
SystemsThatLearn@CSAIL

Sam Madden 
Faculty Co-Director 
SystemsThatLearn@CSAIL

Tommi Jaakkola
Faculty Co-Director 
SystemsThatLearn@CSAIL

Suhail Shergill 
Director, Data Science
The Bank of Nova Scotia
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SYSTEMSTHATLEARN@CSAIL RESEARCHERS

SAM MADDEN 
 
Current Research Topics: 
Database systems, including main memory databases, data warehousing/analytics, database-as-a-ser-
vice, and querying data streams and networks of distributed devices such as wireless sensor networks

FACULTY DIRECTORS

TOMMI JAAKKOLA 
 
Current Research Topics: 
Problems in natural language processing, computational biology (e.g., regulatory models), recommender 
and other large scale inference problems, as well as information retrieval.

FACULTY
MOHAMMAD ALIZADEH 
 
Current Research Topics: 
Building systems that incorporate learning in their control decisions (e.g., for resource management, 
scheduling, etc.)

SAMAN AMARASINGHE 
 
Current Research Topics: 
Compiler optimizations, computer architectures, software engineering and parallel computing

ARVIND 
 
Current Research Topics: 
Synthesis and verification of large digital systems described using Guarded Atomic Actions; and Memory 
Models and Cache Coherence Protocols for parallel architectures and languages

HARI BALAKRISHNAN 
 
Current Research Topics: 
Centralized data planes for datacenters and enterprise networks. Programmable data planes for routers

REGINA BARZILAY 
 
Current Research Topics: 
Natural language processing- medical data focus

Access in-depth exploration of CSAIL research in AI, machine learning and data analytics. As part of 
this initiative, we will leverage the work of 15+ existing research projects. Members will have unprece-
dented access to the research and the research teams.



SYSTEMSTHATLEARN@CSAIL RESEARCHERS

FACULTY (cont.)
BONNIE BERGER
 
Current Research Topics: 
Deep learning algorithms for personalized medical diagnostics and integration of heterogeneous big 
biological data

TAMARA BRODERICK
 
Current Research Topics: 
Bayesian inference and graphical models—with an emphasis on scalable, nonparametric, and unsuper-
vised learning.

SRINIVAS DEVADAS 
 
Current Research Topics: 
Computer architecture and computer security

ALAN EDELMAN 
 
Current Research Topics: 
Proving “pure math” theorems in random matrix theory, developing numerical algorithms, and improving 
software for high performance computing

JOHN FISHER
 
Current Research Topics: 
Signal level approaches to multi-modal data fusion, distributed inference under resource constraints, 
resource management in sensor networks, and analysis of seismic and radar images

WILLIAM FREEMAN 
 
Current Research Topics: 
Motion re-rendering, computational photography, and learning for vision

JIM GLASS
 
Current Research Topics: 
Machine learning, neural models

POLINA GOLLAND
 
Current Research Topics: 
Building systems that enable medical image analysis and visualization

AMAR GUPTA
 
Current Research Topics: 
Digital Health from technical, business, legal, entrepreneurial, and public  
policy aspects
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SYSTEMSTHATLEARN@CSAIL RESEARCHERS

FACULTY (cont.)
JOHN GUTTAG
 
Current Research Topics: 
Application of advanced computational techniques to medicine

PIOTR INDYK
 
Current Research Topics: 
Developing algorithms that work well when deployed in large scale systems, focusing on algorithms that 
parallelize well, have predictable or interpretable performance

STEFANIE JEGELKA
 
Current Research Topics: 
Algorithmic machine learning,  modeling, optimization algorithms, theory and applications - the mathe-
matical structure for discrete and combinatorial machine learning problems

LALANA KAGAL
 
Current Research Topics: 
Modeling how social norms and legal rules work in society in order to automate the compliance of policy 
in information systems

BORIS KATZ
 
Current Research Topics: 
Natural language understanding and generation as well as multimodal information access, knowledge 
representation, human computer interaction, and event recognition

ANDREW LO
 
Current Research Topics: 
Computational finance

NANCY ANN LYNCH
 
Current Research Topics: 
Feedback-based algorithms that allow individual agents to adjust their behavior in response to observa-
tions about the environment

ALEKSANDER MADRY
 
Current Research Topics: 
Algorithmic graph theory, i.e., design and analysis of very efficient (approximation) algorithms for funda-
mental graph problems

WOJCIECH MATUSIK
 
Current Research Topics: 
Direct digital manufacturing and computer graphics
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SYSTEMSTHATLEARN@CSAIL RESEARCHERS

FACULTY (cont.)
AUDE OLIVA 
 
Current Research Topics: 
Combining methods from computer science, neuroscience and cognitive science to explain and model 
how perception and cognition are realized in human and machine

ALEX “SANDY” PENTLAND 
 
Current Research Topics: 
Computational social science, big data, privacy, and wearable computing

NICHOLAS ROY 
 
Current Research Topics: 
Building unmanned vehicles that can fly without GPS through unmapped indoor environments, robots 
that can drive through unmapped cities, and to build social robots that can quickly learn what people 
want without being annoying or intrusive

RONITT RUBINFELD
 
Current Research Topics: 
Randomized algorithms, sublinear time algorithms, property testing, program checking, and learning 
theory

DANIEL SANCHEZ 
 
Current Research Topics: 
Performance guarantees in shared clusters and reconfigurable, adaptive memory systems

NIR SHAVIT
 
Current Research Topics: 
High-performance environments for running ML on multicores

ARMANDO SOLAR-LEZAMA
 
Current Research Topics: 
Techniques and tools that exploit automated reasoning and large amounts of computing power to tackle 
challenging programming problems

PETER SZOLIVITZ
 
Current Research Topics: 
The application of AI methods to problems of medical decision making, natural language processing to 
extract meaningful data from clinical narratives to support translational medicine, and the design of infor-
mation systems for health care institutions and patients

JUSTIN SOLOMON 
 
Current Research Topics: 
Geometry/numerics for dealing with 3D data
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SYSTEMSTHATLEARN@CSAIL RESEARCHERS

FACULTY (cont.)
MICHAEL STONEBRAKER
 
Current Research Topics: 
Data base technology, operating systems and the architecture of system software services

RUSSELL TEDRAKE
 
Current Research Topics: 
Control solutions for interesting (underactuated, stochastic, and/or difficult to model) dynamical systems

ANTONIO TORRALBA
 
Current Research Topics: 
Computer vision, machine learning and human visual perception

stl.csail.mit.edu | cap.csail.mit.edu/Resources

For addition information about MIT CSAIL PI’s, please visit: csail.mit.edu/directory



Computer Science and Artificial Intelligence Lab
Principal Investigators

Scott Aaronson
Visiting Professor
Office:
+1 (617) 324-8356
aaronson@csail.mit.edu

Hal Abelson
Professor
Office:32-G516
+1 (617) 253-5856
hal@mit.edu

Ted Adelson
Professor
Office:32-D428
+1 (617) 253-0645
adelson@csail.mit.edu

Anant Agarwal
Professor
Office:
+1 (617) 253-1448
agarwal@edx.org

Mohammad Alizadeh
Assistant Professor
Office:32-G920

alizadeh@mit.edu

Saman Amarasinghe
Professor
Office:32-G744
+1 (617) 253-8879
saman@csail.mit.edu

 Arvind
Professor
Office:32-G866
+1 (617) 253-6090
arvind@csail.mit.edu

Hari Balakrishnan
Professor
Office:32-G940
+1 (617) 253-8713
hari@csail.mit.edu

Regina Barzilay
Professor
Office:32-G468
+1 (617) 258-5706
regina@csail.mit.edu

Bonnie Berger
Professor
Office:32-G574
+1 (617) 253-1827
bab@csail.mit.edu

Tim Berners-Lee
Professor
Office:32-G524
+1 (617) 253-5702
timbl@w3.org

Judy Brewer
Principal Research...
Office:32-385
+1 (617) 258-9741
jbrewer@w3.org

Tamara Broderick
Assistant Professor
Office:32-G498
+1 (617) 324-6749
tbroderick@csail.mit.edu

Rodney Brooks
Professor Emeritus
Office:

brooks@csail.mit.edu

Michael Carbin
Assistant Professor
Office:32-G782
+1 (617) 253-5881
mcarbin@csail.mit.edu

Adam Chlipala
Associate Professor
Office:32-G842
+1 (617) 324-8439
adamc@csail.mit.edu

David Clark
Senior Research Scientist...
Office:32-G816
+1 (617) 253-6003
ddc@csail.mit.edu

F. J. Corbato
Professor Emeritus
Office:
+1 (617) 253-6001
corbato@mit.edu

Costis Daskalakis
Associate Professor
Office:32-G694
+1 (617) 253-9643
costis@csail.mit.edu

Randall Davis
Professor
Office:32-237
+1 (617) 253-5879
davis@csail.mit.edu

Erik Demaine
Professor
Office:32-G680
+1 (617) 253-6871
edemaine@mit.edu

Jack Dennis
Professor Emeritus
Office:32-G868
+1 (617) 253-6856
dennis@csail.mit.edu

Srini Devadas
Professor
Office:32-G844
+1 (617) 253-0454
devadas@csail.mit.edu

Fredo Durand
Professor
Office:32-D424
+1 (617) 253-7223
fredo@csail.mit.edu

Alan Edelman
Professor
Office:32-G780
+1 (617) 253-1355
edelman@csail.mit.edu

Joel Emer
Professor of the Practice...
Office:32-G864
+1 (617) 258-9190
emer@csail.mit.edu

John Fisher
Senior Research Scientist...
Office:32-D468
+1 (617) 253-0788
fisher@csail.mit.edu

William Freeman
Professor
Office:32-D476
+1 (617) 253-8828
billf@csail.mit.edu

Dave Gifford
Professor
Office:32-G542
+1 (617) 253-6039
gifford@csail.mit.edu

Jim Glass
Senior Research Scientist...
Office:32-G444
+1 (617) 253-1640
glass@mit.edu

Michael Goemans
Professor
Office:32-G618
+1 (617) 253-2688
goemans@csail.mit.edu

Shafi Goldwasser
Professor
Office:32-G682
+1 (617) 253-5914
shafi@csail.mit.edu

Polina Golland
Professor
Office:32-D470
+1 (617) 253-8005
polina@csail.mit.edu

Eric Grimson
Chancellor for Academic...
Office:3-221
+1 (617) 253-5415
welg@mit.edu

John Guttag
Professor
Office:32-G966
+1 (617) 253-6022
guttag@csail.mit.edu

D. Fox Harrell
Associate Professor
Office:14N-207
+1 (617) 324-4278
fox@csail.mit.edu

Berthold Horn
Professor
Office:32-D434
+1 (617) 253-5863
bkph@csail.mit.edu

Piotr Indyk
Professor
Office:32-G642
+1 (617) 452-3402
indyk@csail.mit.edu

Tommi Jaakkola
Professor
Office:32-G470
+1 (617) 253-0440
tommi@csail.mit.edu

Daniel Jackson
Professor
Office:32-G704
+1 (617) 258-8471
dnj@csail.mit.edu

Jeffrey Jaffe
Principal Research...
Office:32-386A
+1 (617) 253-7697
jeff@w3.org

Stefanie Jegelka
Assistant Professor
Office:32-G472

stefje@mit.edu

Frans Kaashoek
Professor
Office:32-G992
+1 (617) 253-7149
kaashoek@csail.mit.edu

Leslie Kaelbling
Professor
Office:32-G486
+1 (617) 258-9695
lpk@csail.mit.edu

Lalana Kagal
Principal Research...
Office:32-G518
+1 (617) 253-5845
lkagal@csail.mit.edu

David Karger
Professor
Office:32-G592
+1 (617) 258-6167
karger@csail.mit.edu

Dina Katabi
Professor
Office:32-G936
+1 (617) 324-6027
dina@csail.mit.edu

Boris Katz
Principal Research...
Office:32-G430
+1 (617) 253-6032
boris@csail.mit.edu



Computer Science and Artificial Intelligence Lab
Principal Investigators

Manolis Kellis
Professor
Office:32-D524
+1 (617) 253-2419
manoli@mit.edu

Jonathan Kelner
Associate Professor
Office:32-G618
+1 (617) 253-4344
kelner@mit.edu

Butler Lampson
Adjunct Professor
Office:32-G924
+1 (617) 253-6004
blampson@microsoft.com

Tom Leighton
Professor
Office:32-G594
+1 (617) 253-5876
ftl@csail.mit.edu

Charles Leiserson
Professor
Office:32-G768
+1 (617) 253-5833
cel@csail.mit.edu

John Leonard
Professor
Office:32-232
+1 (617) 253-5305
jleonard@csail.mit.edu

Barbara Liskov
Institute Professor
Office:32-G942
+1 (617) 253-5886
liskov@csail.mit.edu

Andrew Lo
Professor
Office:
+1 (617) 253-0920
alo@mit.edu

Bill Long
Research Affiliate
Office:32-256
+1 (617) 253-3508
wjl@mit.edu

Tomas Lozano-Perez
Professor
Office:32-G492
+1 (617) 253-7889
tlp@csail.mit.edu

Nancy Lynch
Professor
Office:32-G668
+1 (617) 253-7225
lynch@csail.mit.edu

Sam Madden
Professor
Office:32-G938
+1 (617) 258-6643
madden@csail.mit.edu

Aleksander Madry
Assistant Professor
Office:32-G666
+1 (617) 324-6739
madry@mit.edu

Thomas Magnanti
Institute Professor
Office:32-D784
+1 (617) 253-6604
magnanti@csail.mit.edu

Wojciech Matusik
Associate Professor
Office:
+1 (617) 324-8432
wojciech@csail.mit.edu

Albert R. Meyer
Professor
Office:32-G624
+1 (617) 253-6024
meyer@csail.mit.edu

Silvio Micali
Professor
Office:32-G644
+1 (617) 253-5949
silvio@csail.mit.edu

Rob Miller
Professor
Office:32-G718
+1 (617) 324-6028
rcm@csail.mit.edu

Ankur Moitra
Assistant Professor
Office:32-G594
+1 (617) 253-5876
moitra@csail.mit.edu

Robert Morris
Professor
Office:32-G972
+1 (617) 253-5983
rtm@csail.mit.edu

Joel Moses
Institute Professor
Office:32-249
+1 (617) 253-8592
moses@csail.mit.edu

Dana Moshkovitz
Visiting Professor
Office:

dmoshkov@csail.mit.edu

Stefanie Mueller
Associate Professor
Office:32-214

stefanie.mueller@mit.edu

Una-May O'Reilly
Principal Research...
Office:32-D534
+1 (617) 253-6437
unamay@csail.mit.edu

Aude Oliva
Principal Research...
Office:32-D432
+1 (617) 452-2492
oliva@mit.edu

Li Shiuan Peh
Visiting Professor
Office:
+1 (617) 324-8428
peh@csail.mit.edu

Tomaso Poggio
Professor
Office:46-5177
+1 (617) 258-9501
tp@csail.mit.edu

Martin Rinard
Professor
Office:32-G828
+1 (617) 258-6922
rinard@csail.mit.edu

Ronald Rivest
Institute Professor
Office:32-G692
+1 (617) 253-5880
rivest@mit.edu

Ruth Rosenholtz
Principal Research...
Office:32-D532
+1 (617) 324-0269
rruth@csail.mit.edu

Nicholas Roy
Associate Professor
Office:32-330
+1 (617) 253-2517
nickroy@csail.mit.edu

Ronitt Rubinfeld
Professor
Office:32-G698
+1 (617) 253-0884
ronitt@csail.mit.edu

Daniela Rus
Director
Office:32-368
+1 (617) 258-7567
rus@csail.mit.edu

Jerry Saltzer
Professor Emeritus
Office:
+1 (617) 253-6016
saltzer@mit.edu

Daniel Sanchez
Assistant Professor
Office:32-G838
+1 (617) 715-4886
sanchez@csail.mit.edu

Stephanie Seneff
Senior Research Scientist...
Office:32-G438
+1 (617) 253-0451
seneff@csail.mit.edu

Julie Shah
Assistant Professor
Office:32-332
+1 (617) 324-4879
julie_a_shah@csail.mit.edu

Nir Shavit
Professor
Office:32-G622
+1 (617) 324-8440
shanir@csail.mit.edu

Peter Shor
Professor
Office:32-G574
+1 (617) 253-1827
shor@csail.mit.edu

Howard Shrobe
Principal Research...
Office:32-225
+1 (617) 253-7877
hes@csail.mit.edu

Michael Sipser
Professor
Office:32-G594
+1 (617) 253-4992
sipser@MIT.EDU

Armando Solar-Lezama
Associate Professor
Office:32-G840
+1 (617) 258-9727
asolar@csail.mit.edu

Karen Sollins
Principal Research...
Office:32-G818
+1 (617) 253-6006
sollins@csail.mit.edu

Justin Solomon
Assistant Professor
Office:32-D460

jsolomon@mit.edu

David Sontag
Assistant Professor
Office:32-G464

dsontag@csail.mit.edu

Michael Stonebraker
Adjunct Professor
Office:32-G922
+1 (617) 253-3538
stonebraker@csail.mit.edu

Gerald Sussman
Professor
Office:32-G508
+1 (617) 253-5874
gjs@csail.mit.edu

Peter Szolovits
Professor
Office:32-254
+1 (617) 253-3476
psz@mit.edu



Computer Science and Artificial Intelligence Lab
Principal Investigators

Russ Tedrake
Professor
Office:32-380B
+1 (617) 253-1778
russt@csail.mit.edu

Joshua Tenenbaum
Professor
Office:46-4015
+1 (617) 452-2010
jbt@csail.mit.edu

Chris Terman
Senior Lecturer
Office:32-G790
+1 (617) 253-6038
cjt@mit.edu

Bruce Tidor
Professor
Office:32-212
+1 (617) 253-7258
tidor@mit.edu

Antonio Torralba
Professor
Office:32-D462
+1 (617) 324-0900
torralba@csail.mit.edu

Vinod Vaikuntanathan
Associate Professor
Office:32-G696
+1 (617) 324-8444
vinodv@csail.mit.edu

Steve Ward
Professor
Office:32-G786
+1 (617) 253-6036
ward@mit.edu

Ron Weiss
Professor
Office:NE47-223
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Abstract

Prediction without justification has limited ap-
plicability. As a remedy, we learn to extract
pieces of input text as justifications – ratio-
nales – that are tailored to be short and co-
herent, yet sufficient for making the same pre-
diction. Our approach combines two modu-
lar components, generator and encoder, which
are trained to operate well together. The gen-
erator specifies a distribution over text frag-
ments as candidate rationales and these are
passed through the encoder for prediction. Ra-
tionales are never given during training. In-
stead, the model is regularized by desiderata
for rationales. We evaluate the approach on
multi-aspect sentiment analysis against manu-
ally annotated test cases. Our approach out-
performs attention-based baseline by a signif-
icant margin. We also successfully illustrate
the method on the question retrieval task.1

1 Introduction

Many recent advances in NLP problems have come
from formulating and training expressive and elabo-
rate neural models. This includes models for senti-
ment classification, parsing, and machine translation
among many others. The gains in accuracy have,
however, come at the cost of interpretability since
complex neural models offer little transparency con-
cerning their inner workings. In many applications,
such as medicine, predictions are used to drive criti-
cal decisions, including treatment options. It is nec-
essary in such cases to be able to verify and under-

1Our code and data are available at https://github.
com/taolei87/rcnn.

the	beer	was	n’t	what	i	expected,	and	i‘m	not	sure	it’s	“true	
to	 style“,	 but	 i	 thought	 it	 was	 delicious.	 a	 very	 pleasant	
ruby	red-amber	color	with	a	rela9vely	brilliant	finish,	but	a	
limited	amount	of	carbona9on,	from	the	look	of	it.	aroma	is	
what	 i	 think	 an	 amber	 ale	 should	 be	 -	 a	 nice	 blend	 of	
caramel	and	happiness	bound	together.

Review

Ratings
Look: 5 stars Smell: 4 stars

Figure 1: An example of a review with ranking in two cate-

gories. The rationale for Look prediction is shown in bold.

stand the underlying basis for the decisions. Ide-
ally, complex neural models would not only yield
improved performance but would also offer inter-
pretable justifications – rationales – for their predic-
tions.

In this paper, we propose a novel approach to in-
corporating rationale generation as an integral part
of the overall learning problem. We limit ourselves
to extractive (as opposed to abstractive) rationales.
From this perspective, our rationales are simply sub-
sets of the words from the input text that satisfy two
key properties. First, the selected words represent
short and coherent pieces of text (e.g., phrases) and,
second, the selected words must alone suffice for
prediction as a substitute of the original text. More
concretely, consider the task of multi-aspect senti-
ment analysis. Figure 1 illustrates a product review
along with user rating in terms of two categories or
aspects. If the model in this case predicts five star
rating for color, it should also identify the phrase ”a
very pleasant ruby red-amber color” as the rationale
underlying this decision.

In most practical applications, rationale genera-
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tion must be learned entirely in an unsupervised
manner. We therefore assume that our model with
rationales is trained on the same data as the origi-
nal neural models, without access to additional ra-
tionale annotations. In other words, target rationales
are never provided during training; the intermedi-
ate step of rationale generation is guided only by the
two desiderata discussed above. Our model is com-
posed of two modular components that we call the
generator and the encoder. Our generator specifies a
distribution over possible rationales (extracted text)
and the encoder maps any such text to task specific
target values. They are trained jointly to minimize
a cost function that favors short, concise rationales
while enforcing that the rationales alone suffice for
accurate prediction.

The notion of what counts as a rationale may be
ambiguous in some contexts and the task of select-
ing rationales may therefore be challenging to eval-
uate. We focus on two domains where ambiguity
is minimal (or can be minimized). The first sce-
nario concerns with multi-aspect sentiment analysis
exemplified by the beer review corpus (McAuley et
al., 2012). A smaller test set in this corpus iden-
tifies, for each aspect, the sentence(s) that relate to
this aspect. We can therefore directly evaluate our
predictions on the sentence level with the caveat that
our model makes selections on a finer level, in terms
of words, not complete sentences. The second sce-
nario concerns with the problem of retrieving similar
questions. The extracted rationales should capture
the main purpose of the questions. We can therefore
evaluate the quality of rationales as a compressed
proxy for the full text in terms of retrieval perfor-
mance. Our model achieves high performance on
both tasks. For instance, on the sentiment predic-
tion task, our model achieves extraction accuracy of
96%, as compared to 38% and 81% obtained by the
bigram SVM and a neural attention baseline.

2 Related Work

Developing sparse interpretable models is of con-
siderable interest to the broader research commu-
nity(Letham et al., 2015; Kim et al., 2015). The need
for interpretability is even more pronounced with
recent neural models. Efforts in this area include
analyzing and visualizing state activation (Hermans

and Schrauwen, 2013; Karpathy et al., 2015; Li et
al., 2016), learning sparse interpretable word vec-
tors (Faruqui et al., 2015b), and linking word vectors
to semantic lexicons or word properties (Faruqui et
al., 2015a; Herbelot and Vecchi, 2015).

Beyond learning to understand or further con-
strain the network to be directly interpretable, one
can estimate interpretable proxies that approximate
the network. Examples include extracting “if-then”
rules (Thrun, 1995) and decision trees (Craven
and Shavlik, 1996) from trained networks. More
recently, Ribeiro et al. (2016) propose a model-
agnostic framework where the proxy model is
learned only for the target sample (and its neighbor-
hood) thus ensuring locally valid approximations.
Our work differs from these both in terms of what is
meant by an explanation and how they are derived.
In our case, an explanation consists of a concise yet
sufficient portion of the text where the mechanism
of selection is learned jointly with the predictor.

Attention based models offer another means to ex-
plicate the inner workings of neural models (Bah-
danau et al., 2015; Cheng et al., 2016; Martins
and Astudillo, 2016; Chen et al., 2015; Xu and
Saenko, 2015; Yang et al., 2015). Such models have
been successfully applied to many NLP problems,
improving both prediction accuracy as well as vi-
sualization and interpretability (Rush et al., 2015;
Rocktäschel et al., 2016; Hermann et al., 2015).
Xu et al. (2015) introduced a stochastic attention
mechanism together with a more standard soft at-
tention on image captioning task. Our rationale ex-
traction can be understood as a type of stochastic
attention although architectures and objectives dif-
fer. Moreover, we compartmentalize rationale gen-
eration from downstream encoding so as to expose
knobs to directly control types of rationales that are
acceptable, and to facilitate broader modular use in
other applications.

Finally, we contrast our work with rationale-based
classification (Zaidan et al., 2007; Marshall et al.,
2015; Zhang et al., 2016) which seek to improve pre-
diction by relying on richer annotations in the form
of human-provided rationales. In our work, ratio-
nales are never given during training. The goal is to
learn to generate them.
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3 Extractive Rationale Generation

We formalize here the task of extractive rationale
generation and illustrate it in the context of neural
models. To this end, consider a typical NLP task
where we are provided with a sequence of words
as input, namely x = {x1, · · · , xl}, where each
xt ∈ Rd denotes the vector representation of the i-
th word. The learning problem is to map the input
sequence x to a target vector in Rm. For example,
in multi-aspect sentiment analysis each coordinate
of the target vector represents the response or rat-
ing pertaining to the associated aspect. In text re-
trieval, on the other hand, the target vectors are used
to induce similarity assessments between input se-
quences. Broadly speaking, we can solve the associ-
ated learning problem by estimating a complex pa-
rameterized mapping enc(x) from input sequences
to target vectors. We call this mapping an encoder.
The training signal for these vectors is obtained ei-
ther directly (e.g., multi-sentiment analysis) or via
similarities (e.g., text retrieval). The challenge is
that a complex neural encoder enc(x) reveals lit-
tle about its internal workings and thus offers little
in the way of justification for why a particular pre-
diction was made.

In extractive rationale generation, our goal is to
select a subset of the input sequence as a rationale.
In order for the subset to qualify as a rationale it
should satisfy two criteria: 1) the selected words
should be interpretable and 2) they ought to suffice
to reach nearly the same prediction (target vector)
as the original input. In other words, a rationale
must be short and sufficient. We will assume that
a short selection is interpretable and focus on opti-
mizing sufficiency under cardinality constraints.

We encapsulate the selection of words as a ratio-
nale generator which is another parameterized map-
ping gen(x) from input sequences to shorter se-
quences of words. Thus gen(x) must include only a
few words and enc(gen(x)) should result in nearly
the same target vector as the original input passed
through the encoder or enc(x). We can think of the
generator as a tagging model where each word in the
input receives a binary tag pertaining to whether it is
selected to be included in the rationale. In our case,
the generator is probabilistic and specifies a distri-
bution over possible selections.

The rationale generation task is entirely unsuper-
vised in the sense that we assume no explicit anno-
tations about which words should be included in the
rationale. Put another way, the rationale is intro-
duced as a latent variable, a constraint that guides
how to interpret the input sequence. The encoder
and generator are trained jointly, in an end-to-end
fashion so as to function well together.

4 Encoder and Generator

We use multi-aspect sentiment prediction as a guid-
ing example to instantiate the two key components –
the encoder and the generator. The framework itself
generalizes to other tasks.

Encoder enc(·): Given a training instance (x,y)
where x = {xt}lt=1 is the input text sequence of
length l and y ∈ [0, 1]m is the target m-dimensional
sentiment vector, the neural encoder predicts ỹ =
enc(x). If trained on its own, the encoder would
aim to minimize the discrepancy between the pre-
dicted sentiment vector ỹ and the gold target vector
y. We will use the squared error (i.e. L2 distance)
as the sentiment loss function,

L(x,y) = ‖ỹ − y‖22 = ‖enc(x)− y‖22
The encoder could be realized in many ways such
as a recurrent neural network. For example, let
ht = fe(xt,ht−1) denote a parameterized recurrent
unit mapping input word xt and previous state ht−1
to next state ht. The target vector is then generated
on the basis of the final state reached by the recur-
rent unit after processing all the words in the input
sequence. Specifically,

ht = fe(xt,ht−1), t = 1, . . . , l

ỹ = σe(W
ehl + be)

Generator gen(·): The rationale generator ex-
tracts a subset of text from the original input x to
function as an interpretable summary. Thus the ra-
tionale for a given sequence x can be equivalently
defined in terms of binary variables {z1, · · · , zl}
where each zt ∈ 0, 1 indicates whether word xt is
selected or not. From here on, we will use z to
specify the binary selections and thus (z,x) is the
actual rationale generated (selections, input). We
will use generator gen(x) as synonymous with a
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probability distribution over binary selections, i.e.,
z ∼ gen(x) ≡ p(z|x) where the length of z varies
with the input x.

In a simple generator, the probability that the tth

word is selected can be assumed to be conditionally
independent from other selections given the input x.
That is, the joint probability p(z|x) factors accord-
ing to

p(z|x) =
l∏

t=1

p(zt|x) (independent selection)

The component distributions p(zt|x) can be mod-
eled using a shared bi-directional recurrent neural
network. Specifically, let

−→
f () and

←−
f () be the for-

ward and backward recurrent unit, respectively, then

−→
ht =

−→
f (xt,

−−→
ht−1)

←−
ht =

←−
f (xt,

←−−
ht+1)

p(zt|x) = σz(W
z[
−→
ht;
←−
ht] + bz)

Independent but context dependent selection of
words is often sufficient. However, the model is un-
able to select phrases or refrain from selecting the
same word again if already chosen. To this end, we
also introduce a dependent selection of words,

p(z|x) =

l∏

t=1

p(zt|x, z1 · · · zt−1)

which can be also expressed as a recurrent neural
network. To this end, we introduce another hidden
state st whose role is to couple the selections. For
example,

p(zt|x, z1,t−1) = σz(W
z[
−→
ht;
←−
ht; st−1] + bz)

st = fz([
−→
ht;
←−
ht; zt], st−1)

Joint objective: A rationale in our definition cor-
responds to the selected words, i.e., {xk|zk = 1}.
We will use (z,x) as the shorthand for this rationale
and, thus, enc(z,x) refers to the target vector ob-
tained by applying the encoder to the rationale as the
input. Our goal here is to formalize how the ratio-
nale can be made short and meaningful yet function
well in conjunction with the encoder. Our generator
and encoder are learned jointly to interact well but
they are treated as independent units for modularity.

The generator is guided in two ways during learn-
ing. First, the rationale that it produces must suffice
as a replacement for the input text. In other words,
the target vector (sentiment) arising from the ratio-
nale should be close to the gold sentiment. The cor-
responding loss function is given by

L(z,x,y) = ‖enc(z,x)− y‖22
Note that the loss function depends directly (para-
metrically) on the encoder but only indirectly on the
generator via the sampled selection.

Second, we must guide the generator to realize
short and coherent rationales. It should select only a
few words and those selections should form phrases
(consecutive words) rather than represent isolated,
disconnected words. We therefore introduce an ad-
ditional regularizer over the selections

Ω(z) = λ1‖z‖+ λ2
∑

t

|zt − zt−1|

where the first term penalizes the number of selec-
tions while the second one discourages transitions
(encourages continuity of selections). Note that this
regularizer also depends on the generator only indi-
rectly via the selected rationale. This is because it
is easier to assess the rationale once produced rather
than directly guide how it is obtained.

Our final cost function is the combination of the
two, cost(z,x,y) = L(z,x,y) + Ω(z). Since the
selections are not provided during training, we min-
imize the expected cost:

min
θe,θg

∑

(x,y)∈D
Ez∼gen(x) [cost(z,x,y)]

where θe and θg denote the set of parameters of the
encoder and generator, respectively, and D is the
collection of training instances. Our joint objective
encourages the generator to compress the input text
into coherent summaries that work well with the as-
sociated encoder it is trained with.

Minimizing the expected cost is challenging since
it involves summing over all the possible choices
of rationales z. This summation could potentially
be made feasible with additional restrictive assump-
tions about the generator and encoder. However, we
assume only that it is possible to efficiently sample
from the generator.
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Doubly stochastic gradient We now derive a
sampled approximation to the gradient of the ex-
pected cost objective. This sampled approxima-
tion is obtained separately for each input text x so
as to work well with an overall stochastic gradient
method. Consider therefore a training pair (x,y).
For the parameters of the generator θg,

∂Ez∼gen(x) [cost(z,x,y)]

∂θg

=
∑

z

cost(z,x,y) · ∂p(z|x)

∂θg

=
∑

z

cost(z,x,y) · ∂p(z|x)

∂θg
· p(z|x)

p(z|x)

Using the fact (log f(θ))′ = f ′(θ)/f(θ), we get

∑

z

cost(z,x,y) · ∂p(z|x)

∂θg
· p(z|x)

p(z|x)

=
∑

z

cost(z,x,y) · ∂ log p(z|x)

∂θg
· p(z|x)

= Ez∼gen(x)

[
cost(z,x,y)

∂ log p(z|x)

∂θg

]

The last term is the expected gradient where the ex-
pectation is taken with respect to the generator dis-
tribution over rationales z. Therefore, we can simply
sample a few rationales z from the generator gen(x)
and use the resulting average gradient in an overall
stochastic gradient method. A sampled approxima-
tion to the gradient with respect to the encoder pa-
rameters θe can be derived similarly,

∂Ez∼gen(x) [cost(z,x,y)]

∂θe

=
∑

z

∂cost(z,x,y)

∂θe
· p(z|x)

= Ez∼gen(x)
[
∂cost(z,x,y)

∂θe

]

Choice of recurrent unit We employ recurrent
convolution (RCNN), a refinement of local-ngram
based convolution. RCNN attempts to learn n-gram
features that are not necessarily consecutive, and
average features in a dynamic (recurrent) fashion.
Specifically, for bigrams (filter width n = 2) RCNN
computes ht = f(xt,ht−1) as follows

Number of reviews 1580k
Avg length of review 144.9
Avg correlation between aspects 63.5%
Max correlation between two aspects 79.1%
Number of annotated reviews 994

Table 1: Statistics of the beer review dataset.

λt = σ(Wλxt + Uλht−1 + bλ)

c
(1)
t = λt � c

(1)
t−1 + (1− λt)� (W1xt)

c
(2)
t = λt � c

(2)
t−1 + (1− λt)� (c

(1)
t−1 + W2xt)

ht = tanh(c
(2)
t + b)

RCNN has been shown to work remarkably in clas-
sification and retrieval applications (Lei et al., 2015;
Lei et al., 2016) compared to other alternatives such
CNNs and LSTMs. We use it for all the recurrent
units introduced in our model.

5 Experiments

We evaluate the proposed joint model on two NLP
applications: (1) multi-aspect sentiment analysis on
product reviews and (2) similar text retrieval on
AskUbuntu question answering forum.

5.1 Multi-aspect Sentiment Analysis

Dataset We use the BeerAdvocate2 review dataset
used in prior work (McAuley et al., 2012).3 This
dataset contains 1.5 million reviews written by the
website users. The reviews are naturally multi-
aspect – each of them contains multiple sentences
describing the overall impression or one particu-
lar aspect of a beer, including appearance, smell
(aroma), palate and the taste. In addition to the writ-
ten text, the reviewer provides the ratings (on a scale
of 0 to 5 stars) for each aspect as well as an overall
rating. The ratings can be fractional (e.g. 3.5 stars),
so we normalize the scores to [0, 1] and use them as
the (only) supervision for regression.

McAuley et al. (2012) also provided sentence-
level annotations on around 1,000 reviews. Each
sentence is annotated with one (or multiple) aspect
label, indicating what aspect this sentence covers.

2www.beeradvocate.com
3http://snap.stanford.edu/data/

web-BeerAdvocate.html
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Method Appearance Smell Palate
% precision % selected % precision % selected % precision % selected

SVM 38.3 13 21.6 7 24.9 7
Attention model 80.6 13 88.4 7 65.3 7
Generator (independent) 94.8 13 93.8 7 79.3 7
Generator (recurrent) 96.3 14 95.1 7 80.2 7

Table 2: Precision of selected rationales for the first three aspects. The precision is evaluated based on whether the selected words

are in the sentences describing the target aspect, based on the sentence-level annotations. Best training epochs are selected based

on the objective value on the development set (no sentence annotation is used).

D d l |θ| MSE
SVM 260k - - 2.5M 0.0154
SVM 1580k - - 7.3M 0.0100
LSTM 260k 200 2 644k 0.0094
RCNN 260k 200 2 323k 0.0087

Table 3: Comparing neural encoders with bigram SVM model.

MSE is the mean squared error on the test set. D is the amount

of data used for training and development. d stands for the hid-

den dimension, l denotes the depth of network and |θ| denotes

the number of parameters (number of features for SVM).

We use this set as our test set to evaluate the preci-
sion of words in the extracted rationales.

Table 1 shows several statistics of the beer review
dataset. The sentiment correlation between any pair
of aspects (and the overall score) is quite high, get-
ting 63.5% on average and a maximum of 79.1%
(between the taste and overall score). If directly
training the model on this set, the model can be con-
fused due to such strong correlation. We therefore
perform a preprocessing step, picking “less corre-
lated” examples from the dataset.4 This gives us a
de-correlated subset for each aspect, each contain-
ing about 80k to 90k reviews. We use 10k as the
development set. We focus on three aspects since
the fourth aspect taste still gets > 50% correlation
with the overall sentiment.

Sentiment Prediction Before training the joint
model, it is worth assessing the neural encoder sepa-
rately to check how accurately the neural network
predicts the sentiment. To this end, we compare
neural encoders with bigram SVM model, training
medium and large SVM models using 260k and all

4Specifically, for each aspect we train a simple linear regres-
sion model to predict the rating of this aspect given the ratings
of the other four aspects. We then keep picking reviews with
largest prediction error until the sentiment correlation in the se-
lected subset increases dramatically.

0.008

0.010

0.012

0.014

0.016

0% 25% 50% 75% 100%

0.015
SVM

0.009
Encoder

Figure 2: Mean squared error of all aspects on the test set (y-

axis) when various percentages of text are extracted as ratio-

nales (x-axis). 220k training data is used.

1580k reviews respectively. As shown in Table 3,
the recurrent neural network models outperform the
SVM model for sentiment prediction and also re-
quire less training data to achieve the performance.
The LSTM and RCNN units obtain similar test er-
ror, getting 0.0094 and 0.0087 mean squared error
respectively. The RCNN unit performs slightly bet-
ter and uses less parameters. Based on the results,
we choose the RCNN encoder network with 2 stack-
ing layers and 200 hidden states.

To train the joint model, we also use RCNN unit
with 200 states as the forward and backward recur-
rent unit for the generator gen(). The dependent
generator has one additional recurrent layer. For this
layer we use 30 states so the dependent version still
has a number of parameters comparable to the inde-
pendent version. The two versions of the generator
have 358k and 323k parameters respectively.

Figure 2 shows the performance of our joint de-
pendent model when trained to predict the sentiment
of all aspects. We vary the regularization λ1 and λ2
to show various runs that extract different amount of
text as rationales. Our joint model gets performance
close to the best encoder run (with full text) when
few words are extracted.

112



a	beer	that	is	not	sold	in	my	neck	of	the	woods	,	but	managed	to	get	while	on	a	roadtrip	.	poured	into	an	imperial	pint	glass	with	a	
generous	head	that	sustained	life	throughout	.	nothing	out	of	the	ordinary	here	,	but	a	good	brew	s9ll	.	body	was	kind	of	heavy	,	but	
not	thick	.	the	hop	smell	was	excellent	and	en9cing	.	very	drinkable

very	dark	beer	.	pours	a	nice	finger	and	a	half	of	creamy	foam	and	stays	throughout	the	beer	.	smells	of	coffee	and	roasted	malt	.	has	a	
major	 coffee-like	 taste	with	hints	of	 chocolate	 .	 if	 you	 like	black	 coffee	 ,	 you	will	 love	 this	 porter	 .	 creamy	 smooth	mouthfeel	 and	
definitely	gets	smoother	on	the	palate	once	it	warms	.	it	's	an	ok	porter	but	i	feel	there	are	much	beAer	one	's	out	there	.

poured	into	a	sniBer	.	produces	a	small	coffee	head	that	reduces	quickly	.	black	as	night	.	preAy	typical	imp	.	roasted	malts	hit	
on	 the	 nose	 .	 a	 liAle	 sweet	 chocolate	 follows	 .	 big	 toasty	 character	 on	 the	 taste	 .	 in	 between	 i	 'm	 geDng	 plenty	 of	 dark	
chocolate	and	some	biAer	espresso	.	it	finishes	with	hop	biAerness	.	nice	smooth	mouthfeel	with	perfect	carbona9on	for	the	
style	.	overall	a	nice	stout	i	would	love	to	have	again	,	maybe	with	some	age	on	it	.

i	really	did	not	like	this	.	it	just	seemed	extremely	watery	.	i	dont	'	think	this	had	any	carbona9on	whatsoever	.	maybe	it	was	flat	,	who	
knows	?	but	even	if	i	got	a	bad	brew	i	do	n't	see	how	this	would	possibly	be	something	i	'd	get	9me	and	9me	again	.	i	could	taste	the	
hops	towards	the	middle	,	but	the	beer	got	preAy	nasty	towards	the	boAom	.	i	would	never	drink	this	again	,	unless	it	was	free	.	i	'm	
kind	of	upset	i	bought	this	.

a	:	poured	a	nice	dark	brown	with	a	tan	colored	head	about	half	an	inch	thick	,	nice	red/garnet	accents	when	held	to	the	light	.	liAle	
clumps	of	lacing	all	around	the	glass	,	not	too	shabby	.	not	terribly	impressive	though	s	:	smells	like	a	more	guinness-y	guinness	really	,	
there	are	some	roasted	malts	there	,	signature	guinness	smells	,	less	burnt	though	,	a	liAle	bit	of	chocolate	…	…	m	:	rela9vely	thick	,	it	
is	n't	an	export	stout	or	imperial	stout	,	but	s9ll	is	preAy	heBy	in	the	mouth	,	very	smooth	,	not	much	carbona9on	.	not	too	shabby	d	:	
not	quite	as	drinkable	as	the	draught	,	but	s9ll	not	too	bad	.	i	could	easily	see	drinking	a	few	of	these	.

Figure 3: Examples of extracted rationales indicating the sentiments of various aspects. The extracted texts for appearance, smell

and palate are shown in red, blue and green color respectively. The last example is shortened for space.

SVM Attention Gen (independent) Gen (recurrent)

1 73.9 1 89.1 6 97.4 12 96.5

3 55.9 3 88.1 13 94.9 14 96.3

5 48.5 5 86.4 16 92.9 16 91.2

7 44.7 7 84.1

9 42.2 9 82.3

11 41.2 11 79.8

13 38.3 13 77.1

15 36.7 15 74.4

17 35.1 17 71.6

30

48

65

83

100

5 7 9 11 13 15 17

SVM
Attention
Gen (independent)
Gen (recurrent)

�1

Figure 4: Precision (y-axis) when various percentages of text

are extracted as rationales (x-axis) for the appearance aspect.

Rationale Selection To evaluate the supporting
rationales for each aspect, we train the joint encoder-
generator model on each de-correlated subset. We
set the cardinality regularization λ1 between values
{2e − 4, 3e − 4, 4e − 4} so the extracted rationale
texts are neither too long nor too short. For simplic-
ity, we set λ2 = 2λ1 to encourage local coherency
of the extraction.

For comparison we use the bigram SVM model
and implement an attention-based neural network
model. The SVM model successively extracts un-
igram or bigram (from the test reviews) with the
highest feature. The attention-based model learns a
normalized attention vector of the input tokens (us-
ing similarly the forward and backward RNNs), then
the model averages over the encoder states accord-
ingly to the attention, and feed the averaged vector
to the output layer. Similar to the SVM model, the
attention-based model can selects words based on
their attention weights.

0 50 100

0.03

0.04

0.05

0.06

Gen (recurrent)
Gen (independent)

0.2

0.4
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0.8

1.0

Figure 5: Learning curves of the optimized cost function on the

development set and the precision of rationales on the test set.

The smell (aroma) aspect is the target aspect.

Table 2 presents the precision of the extracted ra-
tionales calculated based on sentence-level aspect
annotations. The λ1 regularization hyper-parameter
is tuned so the two versions of our model extract
similar number of words as rationales. The SVM
and attention-based model are constrained similarly
for comparison. Figure 4 further shows the preci-
sion when different amounts of text are extracted.
Again, for our model this corresponds to changing
the λ1 regularization. As shown in the table and the
figure, our encoder-generator networks extract text
pieces describing the target aspect with high preci-
sion, ranging from 80% to 96% across the three as-
pects appearance, smell and palate. The SVM base-
line performs poorly, achieving around 30% accu-
racy. The attention-based model achieves reasonable
but worse performance than the rationale generator,
suggesting the potential of directly modeling ratio-
nales as explicit extraction.

113



Figure 5 shows the learning curves of our model
for the smell aspect. In the early training epochs,
both the independent and (recurrent) dependent se-
lection models fail to produce good rationales, get-
ting low precision as a result. After a few epochs
of exploration however, the models start to achieve
high accuracy. We observe that the dependent ver-
sion learns more quickly in general, but both ver-
sions obtain close results in the end.

Finally we conduct a qualitative case study on
the extracted rationales. Figure 3 presents several
reviews, with highlighted rationales predicted by
the model. Our rationale generator identifies key
phrases or adjectives that indicate the sentiment of
a particular aspect.

5.2 Similar Text Retrieval on QA Forum

Dataset For our second application, we use
the real-world AskUbuntu5 dataset used in recent
work (dos Santos et al., 2015; Lei et al., 2016). This
set contains a set of 167k unique questions (each
consisting a question title and a body) and 16k user-
identified similar question pairs. Following previ-
ous work, this data is used to train the neural en-
coder that learns the vector representation of the
input question, optimizing the cosine distance (i.e.
cosine similarity) between similar questions against
random non-similar ones. We use the “one-versus-
all” hinge loss (i.e. positive versus other negatives)
for the encoder, similar to (Lei et al., 2016). Dur-
ing development and testing, the model is used to
score 20 candidate questions given each query ques-
tion, and a total of 400×20 query-candidate question
pairs are annotated for evaluation6.

Task/Evaluation Setup The question descriptions
are often long and fraught with irrelevant details. In
this set-up, a fraction of the original question text
should be sufficient to represent its content, and be
used for retrieving similar questions. Therefore, we
will evaluate rationales based on the accuracy of the
question retrieval task, assuming that better ratio-
nales achieve higher performance. To put this per-
formance in context, we also report the accuracy
when full body of a question is used, as well as ti-
tles alone. The latter constitutes an upper bound on

5askubuntu.com
6https://github.com/taolei87/askubuntu

MAP (dev) MAP (test) %words
Full title 56.5 60.0 10.1
Full body 54.2 53.0 89.9

Independent
55.7 53.6 9.7
56.3 52.6 19.7

Dependent
56.1 54.6 11.6
56.5 55.6 32.8

Table 4: Comparison between rationale models (middle and

bottom rows) and the baselines using full title or body (top row).

Gen (independent) Gen (recurrent)

0.052 47.08 0.063 50.54

0.058 52.36 0.067 49.48

0.059 46.02 0.07 51.96

0.062 49.76 0.078 51.54

0.064 47.94 0.086 52.55

0.068 48.93 0.095 53.59

0.07 49.5 0.108 53.15

0.081 52.18 0.112 51.48

0.081 51.84 0.116 54.62

0.094 51.24 0.121 52.12

0.094 52.21 0.137 53

0.097 53.61 0.163 53.2

0.098 54.11 0.179 54.13

0.122 49.03 0.193 52.11

0.133 54.19 0.262 52.32

0.135 50.21 0.277 50.87

0.136 48.22 0.328 53.21

0.145 50.96 0.328 55.61

0.155 52.91 0.347 51

0.173 52.74 0.378 54.93

0.197 52.6

45.0

47.8

50.5

53.3

56.0

5% 9% 13% 16% 20%

Gen (independent)
Gen (recurrent)

�1

Figure 6: Retrieval MAP on the test set when various percent-

ages of the texts are chosen as rationales. Data points corre-

spond to models trained with different hyper-parameters.

the model performance as in this dataset titles pro-
vide short, informative summaries of the question
content. We evaluate the rationales using the mean
average precision (MAP) of retrieval.

Results Table 4 presents the results of our ratio-
nale model. We explore a range of hyper-parameter
values7. We include two runs for each version. The
first one achieves the highest MAP on the develop-
ment set, The second run is selected to compare the
models when they use roughly 10% of question text
(7 words on average). We also show the results of
different runs in Figure 6. The rationales achieve the
MAP up to 56.5%, getting close to using the titles.
The models also outperform the baseline of using
the noisy question bodies, indicating the the models’
capacity of extracting short but important fragments.

Figure 7 shows the rationales for several questions
in the AskUbuntu domain, using the recurrent ver-
sion with around 10% extraction. Interestingly, the
model does not always select words from the ques-
tion title. The reasons are that the question body
can contain the same or even complementary infor-
mation useful for retrieval. Indeed, some rationale
fragments shown in the figure are error messages,

7λ1 ∈ {.008, .01, .012, .015}, λ2 = {0, λ1, 2λ1}, dropout
∈ {0.1, 0.2}
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i	accidentally	removed	the	ubuntu	soBware	centre	,	when	i	was	actually	trying	to	remove	my	ubuntu	one	applica9ons	.	although	i	do	
n't	remember	directly	uninstalling	the	centre	,	i	think	dele9ng		one	of	those	packages	might	have	triggered	it	.	i	can	not	look	at	history	
of	applica9on	changes	,	as	the	soBware	centre	is	missing	.	please	advise	on	how	to	install	,	or	rather	reinstall	,	ubuntu	soBware	centre	
on	my	computer	.	how	do	i	install	ubuntu	soBware	centre	applica9on	?

i	know	this	will	be	an	odd	ques9on	,	but	 i	was	wondering	 if	anyone	knew	how	to	 install	 the	ubuntu	 installer	package	 in	an	ubuntu	
installa9on	.	to	clarify	,	when	you	boot	up	to	an	ubuntu	livecd	,	it	's	got	the	installer	program	available	so	that	you	can	install	ubuntu	to	
a	drive	.	naturally	,	this	program	is	not	present	in	the	installed	ubuntu	.	is	there	,	though	,	a	way	to	download	and	install	it	like	other	
packages	?	invariably	,	someone	will	ask	what	i	'm	trying	to	do	,	and	the	answer	…	install	installer	package	on	an	installed	system	?

what	is	the	easiest	way	to	install	all	the	media	codec	available	for	ubuntu	?	i	am	having	issues	with	mul9ple	applica9ons	promp9ng	
me	to	install	codecs	before	they	can	play	my	files	.	how	do	i		install	media	codecs	?

what	should	i	do	when	i	see	<unk>	report	this	<unk>	?	an	unresolvable	problem	occurred	while	ini9alizing	the	package	informa9on	.	
please	report	this	bug	against	the	'update-manager	'	package	and	include	the	following	error	message	:	e	:	encountered	a	sec9on	with	
no	package	:	header	e	:	problem	with	mergelist	<unk>	e	:	the	package	lists	or	status	file	could	not	be	parsed	or	opened	.

please	any	one	give	the	solu9on	for	this	whenever	i	try	to	convert	the	rpm	file	to	deb	file	i	always	get	this	problem	error	:	<unk>	:	not	
an	rpm	package	(	or	package	manifest	)	error	execu9ng	``	 	 lang=c	rpm	-qp	--	queryformat	%	{	name	}	<unk>	'	 ''	 :	at	<unk>	line	489	
thanks	conver9ng	rpm	file	to	debian	fle

how	do	i	mount	a	hibernated	par99on	with	windows	8	in	ubuntu	?	i	ca	n't	mount	my	other	par99on	with	windows	8	,	i	have	ubuntu	
12.10	 amd64	 :	 error	 moun9ng	 /dev/sda1	 at	 <unk>	 :	 command-line	 `mount	 -t	 ``	 n[s	 ''	 -o	 ``	 uhelper=udisks2	 ,	 nodev	 ,	 nosuid	 ,	
uid=1000	 ,	 gid=1000	 ,	 dmask=0077	 ,	 fmask=0177	 ''	 ``	 /dev/sda1	 ''	 ``	 <unk>	 ''	 '	 exited	 with	 non-zero	 exit	 status	 14	 :	 windows	 is													
hibernated	,	refused	to	mount	.	failed	to	mount	'/dev/sda1	'	:	opera9on	not	permiAed	the	n[s	par99on	is	hibernated	.	please	resume	
and	shutdown	windows	properly	,	or	mount	the	volume	read-only	with	the	'ro	'	mount	op9on

Figure 7: Examples of extracted rationales of questions in the AskUbuntu domain.

which are typically not in the titles but very useful
to identify similar questions.

6 Discussion

We proposed a novel modular neural framework
to automatically generate concise yet sufficient text
fragments to justify predictions made by neural net-
works. We demonstrated that our encoder-generator
framework, trained in an end-to-end manner, gives
rise to quality rationales in the absence of any ex-
plicit rationale annotations. The approach could be
modified or extended in various ways to other appli-
cations or types of data.

Choices of enc(·) and gen(·). The encoder and
generator can be realized in numerous ways with-
out changing the broader algorithm. For instance,
we could use a convolutional network (Kim, 2014;
Kalchbrenner et al., 2014), deep averaging net-
work (Iyyer et al., 2015; Joulin et al., 2016) or a
boosting classifier as the encoder. When rationales
can be expected to conform to repeated stereotypi-
cal patterns in the text, a simpler encoder consistent
with this bias can work better. We emphasize that,
in this paper, rationales are flexible explanations that
may vary substantially from instance to another. On
the generator side, many additional constraints could
be imposed to further guide acceptable rationales.

Dealing with Search Space. Our training method
employs a REINFORCE-style algorithm (Williams,
1992) where the gradient with respect to the param-
eters is estimated by sampling possible rationales.

Additional constraints on the generator output can
be helpful in alleviating problems of exploring po-
tentially a large space of possible rationales in terms
of their interaction with the encoder. We could also
apply variance reduction techniques to increase sta-
bility of stochastic training (cf. (Weaver and Tao,
2001; Mnih et al., 2014; Ba et al., 2015; Xu et al.,
2015)).
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Abstract

Scene parsing, or recognizing and segmenting objects
and stuff in an image, is one of the key problems in computer
vision. Despite the community’s efforts in data collection,
there are still few image datasets covering a wide range of
scenes and object categories with dense and detailed anno-
tations for scene parsing. In this paper, we introduce and
analyze the ADE20K dataset, spanning diverse annotations
of scenes, objects, parts of objects, and in some cases even
parts of parts. A generic network design called Cascade
Segmentation Module is then proposed to enable the seg-
mentation networks to parse a scene into stuff, objects, and
object parts in a cascade. We evaluate the proposed module
integrated within two existing semantic segmentation net-
works, yielding significant improvements for scene parsing.
We further show that the scene parsing networks trained on
ADE20K can be applied to a wide variety of scenes and ob-
jects1.

1. Introduction

Semantic understanding of visual scenes is one of the
holy grails of computer vision. The emergence of large-
scale image datasets like ImageNet [20], COCO [14] and
Places [26], along with the rapid development of the deep
convolutional neural network (ConvNet) approaches, have
brought great advancements to visual scene understanding.
Nowadays, given a visual scene of a living room, a robot
equipped with a trained ConvNet can accurately predict the
scene category. However, to freely navigate in the scene
and manipulate the objects inside, the robot has far more
information to digest. It needs to recognize and localize not
only the objects like sofa, table, and TV, but also their parts,
e.g., a seat of a chair or a handle of a cup, to allow proper
interaction, as well as to segment the stuff like floor, wall

1Dataset is available at http://groups.csail.mit.edu/
vision/datasets/ADE20K/.

and ceiling for spatial navigation.
Scene parsing, or recognizing and segmenting objects

and stuff in an image, remains one of the key problems in
scene understanding. Going beyond the image-level recog-
nition, scene parsing requires a much denser annotation of
scenes with a large set of objects. However, the current
datasets have limited number of objects (e.g., COCO [14],
Pascal [9]) and in many cases those objects are not the most
common objects one encounters in the world (like frisbees
or baseball bats), or the datasets only cover a limited set
of scenes (e.g., Cityscapes [6]). Some notable exceptions
are Pascal-Context [17] and the SUN database [24]. How-
ever, Pascal-Context still contains scenes primarily focused
on 20 object classes, while SUN has noisy labels at the ob-
ject level.

Our goal is to collect a dataset that has densely annotated
images (every pixel has a semantic label) with a large and an
unrestricted open vocabulary. The images in our dataset are
manually segmented in great detail, covering a diverse set of
scenes, object and object part categories. The challenge for
collecting such annotations is finding reliable annotators, as
well as the fact that labeling is difficult if the class list is
not defined in advance. On the other hand, open vocabu-
lary naming also suffers from naming inconsistencies across
different annotators. In contrast, our dataset was annotated
by a single expert annotator, providing extremely detailed
and exhaustive image annotations. On average, our anno-
tator labeled 29 annotation segments per image, compared
to the 16 segments per image labeled by external annota-
tors (like workers from Amazon Mechanical Turk). Further-
more, the data consistency and quality are much higher than
that of external annotators. Fig. 1 shows examples from our
dataset.

The paper is organized as follows. Firstly we describe
the ADE20K dataset, the collection process and statistics.
We then introduce a generic network design called Cascade
Segmentation Module, which enables neural networks to
segment stuff, objects, and object parts in cascade. Several
semantic segmentation networks are evaluated on the scene
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Figure 1. Images in ADE20K dataset are densely annotated in detail with objects and parts. The first row shows the sample images, the
second row shows the annotation of objects, and the third row shows the annotation of object parts.

parsing benchmark of ADE20K as baselines. The proposed
Cascade Segmentation Module is shown to improve over
those baselines. We further apply the scene parsing net-
works to the tasks of hierarchical semantic segmentation
and automatic scene content removal.

1.1. Related work

Many datasets have been collected for the purpose of se-
mantic understanding of scenes. We review the datasets
according to the level of details of their annotations, then
briefly go through the previous work of semantic segmenta-
tion networks.

Object classification/detection datasets. Most of the
large-scale datasets typically only contain labels at the im-
age level or provide bounding boxes. Examples include Im-
agenet [20], Pascal [9], and KITTI [10]. Imagenet has the
largest set of classes, but contains relatively simple scenes.
Pascal and KITTI are more challenging and have more ob-
jects per image, however, their classes as well as scenes are
more constrained.

Semantic segmentation datasets. Existing datasets
with pixel-level labels typically provide annotations only
for a subset of foreground objects (20 in PASCAL VOC [9]
and 91 in Microsoft COCO [14]). Collecting dense anno-
tations where all pixels are labeled is much more challeng-
ing. Such efforts include Pascal-Context [17], NYU Depth
V2 [18], SUN database [24], SUN RGB-D dataset [22],
CityScapes dataset [6], and OpenSurfaces [2, 3].

Datasets with objects, parts and attributes. Recently,
two datasets were released that go beyond the typical label-
ing setup by also providing pixel-level annotation for the
object parts, i.e. Pascal-Part dataset [5], or material classes,
i.e. OpenSurfaces [2, 3]. We advance this effort by collect-
ing very high-resolution imagery of a much wider selection

of scenes, containing a large set of object classes per image.
We annotated both stuff and object classes, for which we
additionally annotated their parts, and parts of these parts.
We believe that our dataset, ADE20K, is one of the most
comprehensive datasets of its kind. We provide a compari-
son between datasets in Sec. 2.5.

Semantic segmentation networks. With the success of
convolutional neural networks (CNN) for image classifica-
tion [13], there is growing interest for semantic pixel-wise
labeling using CNNs with dense output, such as the fully
CNN [15], deconvolutional neural networks [19], encoder-
decoder SegNet [1], multi-task network cascades [8], and
DilatedNet [4, 25]. They are benchmarked on Pascal dataset
with impressive performance on segmenting the 20 object
classes. Some of them [15, 1] are evaluated on Pascal-
Context [17] or SUN RGB-D dataset [22] to show the ca-
pability to segment more object classes in scenes. Joint
stuff and object segmentation is explored in [7] which uses
pre-computed superpixels and feature masking to represent
stuff. Cascade of instance segmentation and categoriza-
tion has been explored in [8]. In this paper we introduce
a generic network module to segment stuff, objects, and ob-
ject parts jointly in a cascade, which could be integrated in
existing networks.

2. ADE20K: Fully Annotated Image Dataset
In this section, we describe our ADE20K dataset and an-

alyze it through a variety of informative statistics.

2.1. Dataset summary

There are 20,210 images in the training set, 2,000 images
in the validation set, and 3,000 images in the testing set. All
the images are exhaustively annotated with objects. Many
objects are also annotated with their parts. For each object
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a) b)
Figure 2. a) Annotation interface, the list of the objects and their associated parts in the image. b) Section of the relation tree of objects and
parts for the dataset (see the dataset webpage for the full relation tree)

there is additional information about whether it is occluded
or cropped, and other attributes. The images in the valida-
tion set are exhaustively annotated with parts, while the part
annotations are not exhaustive over the images in the train-
ing set. The annotations in the dataset are still growing.
Sample images and annotations from the ADE20K dataset
are shown in Fig. 1.

2.2. Image annotation

For our dataset, we are interested in having a diverse set
of scenes with dense annotations of all the objects present.
Images come from the LabelMe [21], SUN datasets [24],
and Places [26] and were selected to cover the 900 scene
categories defined in the SUN database. Images were an-
notated by a single expert worker using the LabelMe inter-
face [21]. Fig. 2.a shows a snapshot of the annotation inter-
face and one fully segmented image. The worker provided
three types of annotations: object segments with names, ob-
ject parts, and attributes. All object instances are segmented
independently so that the dataset could be used to train and
evaluate detection or segmentation algorithms. Datasets
such as COCO [14], Pascal [9] or Cityscape [6] start by
defining a set of object categories of interest. However,
when labeling all the objects in a scene, working with a
predefined list of objects is not possible as new categories
appear frequently (see fig. 5.d). Here, the annotator cre-
ated a dictionary of visual concepts where new classes were
added constantly to ensure consistency in object naming.

Object parts are associated with object instances. Note
that parts can have parts too, and we label these associations
as well. For example, the ‘rim’ is a part of a ‘wheel’, which
in turn is part of a ‘car’. A ‘knob’ is a part of a ‘door’ that
can be part of a ‘cabinet’. This part hierarchy in Fig. 2.b has
a depth of 3.

2.3. Annotation consistency

Defining a labeling protocol is relatively easy when the
labeling task is restricted to a fixed list of object classes,
however it becomes challenging when the class list is open-
ended. As the goal is to label all the objects within each
image, the list of classes grows unbounded. Many object
classes appear only a few times across the entire collection
of images. However, those rare object classes cannot be ig-
nored as they might be important elements for the interpre-
tation of the scene. Labeling in these conditions becomes
difficult because we need to keep a growing list of all the
object classes in order to have a consistent naming across
the entire dataset. Despite the annotator’s best effort, the
process is not free of noise.

To analyze the annotation consistency we took a subset
of 61 randomly chosen images from the validation set, then
asked our annotator to annotate them again (there is a time
difference of six months). One expects that there are some
differences between the two annotations. A few examples
are shown in Fig 3. On average, 82.4% of the pixels got the
same label. The remaining 17.6% of pixels had some errors
for which we grouped into three error types as follows:

• Segmentation quality: Variations in the quality of
segmentation and outlining of the object boundary.
One typical source of error arises when segmenting
complex objects such as buildings and trees, which can
be segmented with different degrees of precision. 5.7%
of the pixels had this type of error.

• Object naming: Differences in object naming (due
to ambiguity or similarity between concepts, for in-
stance, calling a big car a ‘car’ in one segmentation and
a ‘truck’ in the another one, or a ‘palm tree’ a ‘tree’.

3
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Figure 3. Analysis of annotation consistency. Each column shows an image and two segmentations done by the same annotator at different
times. Bottom row shows the pixel discrepancy when the two segmentations are subtracted, while the number at the bottom shows the
percentage of pixels with the same label. On average across all re-annotated images, 82.4% of pixels got the same label. In the example in
the first column the percentage of pixels with the same label is relatively low because the annotator labeled the same region as ‘snow’ and
‘ground’ during the two rounds of annotation. In the third column, there were many objects in the scene and the annotator missed some
between the two segmentations.

6.0% of the pixels had naming issues. These errors can
be reduced by defining a very precise terminology, but
this becomes much harder with a large growing vocab-
ulary.

• Segmentation quantity: Missing objects in one of the
two segmentations. There is a very large number of
objects in each image and some images might be an-
notated more thoroughly than others. For example, in
the third column of Fig 3 the annotator missed some
small objects in different annotations. 5.9% of the pix-
els are due to missing labels. A similar issue existed
in segmentation datasets such as the Berkeley Image
segmentation dataset [16].

The median error values for the three error types are:
4.8%, 0.3% and 2.6% showing that the mean value is dom-
inated by a few images, and that the most common type of
error is segmentation quality.

To further compare the annotation done by our single
expert annotator and the AMT-like annotators, 20 images
from the validation set are annotated by two invited exter-
nal annotators, both with prior experience in image labeling.
The first external annotator had 58.5% of inconsistent pixels
compared to the segmentation provided by our annotator,
and the second external annotator had 75% of the inconsis-
tent pixels. Many of these inconsistencies are due to the
poor quality of the segmentations provided by external an-
notators (as it has been observed with AMT which requires

multiple verification steps for quality control [14]). For the
best external annotator (the first one), 7.9% of pixels have
inconsistent segmentations (just slightly worse than our an-
notator), 14.9% have inconsistent object naming and 35.8%
of the pixels correspond to missing objects, which is due to
the much smaller number of objects annotated by the exter-
nal annotator in comparison with the ones annotated by our
expert annotator. The external annotators labeled on aver-
age 16 segments per image while our annotator provided 29
segments per image.

2.4. Dataset statistics

Fig. 4.a shows the distribution of ranked object frequen-
cies. The distribution is similar to a Zipf’s law and is typi-
cally found when objects are exhaustively annotated in im-
ages [23, 24]. They differ from the ones from datasets such
as COCO or ImageNet where the distribution is more uni-
form resulting from manual balancing.

Fig. 4.b shows the distributions of annotated parts
grouped by the objects they belong to and sorted by fre-
quency within each object class. Most object classes also
have a non-uniform distribution of part counts. Fig. 4.c and
Fig. 4.d show how objects are shared across scenes and how
parts are shared by objects. Fig. 4.e shows the variability in
the appearances of the part ‘door’.

The mode of the object segmentations is shown in
Fig. 5.a and contains the four objects (from top to bottom):
‘sky’, ‘wall’, ‘building’ and ‘floor’. When using simply the
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Figure 4. a) Object classes sorted by frequency. Only the top 270 classes with more than 100 annotated instances are shown. 68 classes
have more than a 1000 segmented instances. b) Frequency of parts grouped by objects. There are more than 200 object classes with
annotated parts. Only objects with 5 or more parts are shown in this plot (we show at most 7 parts for each object class). c) Objects ranked
by the number of scenes they are part of. d) Object parts ranked by the number of objects they are part of. e) Examples of objects with
doors. The bottom-right image is an example where the door does not behave as a part.

mode to segment the images, it gets, on average, 20.9% of
the pixels of each image right. Fig. 5.b shows the distribu-
tion of images according to the number of distinct classes
and instances. On average there are 19.5 instances and 10.5
object classes per image, larger than other existing datasets
(see Table 1). Fig. 5.c shows the distribution of parts.

As the list of object classes is not predefined, there are
new classes appearing over time of annotation. Fig. 5.d
shows the number of object (and part) classes as the number
of annotated instances increases. Fig. 5.e shows the proba-
bility that instance n + 1 is a new class after labeling n in-
stances. The more segments we have, the smaller the proba-
bility that we will see a new class. At the current state of the
dataset, we get one new object class every 300 segmented
instances.

2.5. Comparison with other datasets

We compare ADE20K with existing datasets in Tab. 1.
Compared to the largest annotated datasets, COCO [14] and
Imagenet [20], our dataset comprises of much more diverse
scenes, where the average number of object classes per im-
age is 3 and 6 times larger, respectively. With respect to
SUN [24], ADE20K is roughly 35% larger in terms of im-
ages and object instances. However, the annotations in our
dataset are much richer since they also include segmenta-
tion at the part level. Such annotation is only available for
the Pascal-Context/Part dataset [17, 5] which contains 40
distinct part classes across 20 object classes. Note that we
merged some of their part classes to be consistent with our
labeling (e.g., we mark both left leg and right leg as the same
semantic part leg). Since our dataset contains part annota-
tions for a much wider set of object classes, the number of
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Figure 5. a) Mode of the object segmentations contains ‘sky’, ‘wall’, ‘building’ and ‘floor’. b) Histogram of the number of segmented
object instances and classes per image. c) Histogram of the number of segmented part instances and classes per object. d) Number of
classes as a function of segmented instances (objects and parts). The squares represent the current state of the dataset. e) Probability of
seeing a new object (or part) class as a function of the number of instances.

part classes is almost 9 times larger in our dataset.
An interesting fact is that any image in ADE20K con-

tains at least 5 objects, and the maximum number of object
instances per image reaches 273, and 419 instances, when
counting parts as well. This shows the high annotation com-
plexity of our dataset.

3. Cascade Segmentation Module

While the frequency of objects appearing in scenes fol-
lows a long-tail distribution, the pixel ratios of objects also
follow such a distribution. For example, the stuff classes
like ‘wall’, ‘building’, ‘floor’, and ‘sky’ occupy more than
40% of all the annotated pixels, while the discrete objects,
such as ‘vase’ and ‘microwave’ at the tail of the distribution
(see Fig. 4b), occupy only 0.03% of the annotated pixels.
Because of the long-tail distribution, a semantic segmenta-
tion network can be easily dominated by the most frequent
stuff classes. On the other hand, there are spatial layout re-
lations among stuff and objects, and the objects and the ob-
ject parts, which are ignored by the design of the previous
semantic segmentation networks. For example, a drawing
on a wall is a part of the wall (the drawing occludes the
wall), and the wheels on a car are also parts of the car.

To handle the long-tail distribution of objects in scenes
and the spatial layout relations of scenes, objects, and ob-
ject parts, we propose a network design called Cascade Seg-
mentation Module. This module is a generic network de-
sign which can potentially be integrated in any previous
semantic segmentation networks. We first categorize se-
mantic classes of the scenes into three macro classes: stuff
(sky, road, building, etc), foreground objects (car, tree, sofa,
etc), and object parts (car wheels and door, people head and
torso, etc). Note that in some scenarios there are some ob-
ject classes like ‘building’ or ‘door’ could belong to either
of two macro classes, here we assign the object classes to
their most likely macro class.

In the network for scene parsing, different streams of

high-level layers are used to represent each macro class and
recognize the assigned classes. The segmentation results
from each stream are then fused to generate the segmenta-
tion. The proposed module is illustrated in Fig. 6.

More specifically, the stuff stream is trained to classify
all the stuff classes plus one foreground object class (which
includes all the non-stuff classes). After training, the stuff
stream generates stuff segmentation and a dense objectness
map indicating the probability that a pixel belongs to the
foreground object class. The object stream is trained to clas-
sify the discrete objects. All the non-discrete objects are
ignored in the training loss function of the object stream.
After training, the object stream further segments each dis-
crete object on the predicted objectness map from the stuff
stream. The result is merged with the stuff segmentation to
generate the scene segmentation. For those discrete objects
annotated with parts, the part stream can be jointly trained
to segment object parts. Thus the part stream further seg-
ments parts on each object score map predicted from the
object stream.

The network with the two streams (stuff+objects) or
three streams (stuff+objects+parts) could be trained end-to-
end. The streams share the weights of the lower layers.
Each stream has a training loss at the end. For the stuff
stream we use the per-pixel cross-entropy loss, where the
output classes are all the stuff classes plus the foreground
class (all the discrete object classes are included in it). We
use the per-pixel cross-entropy loss for the object stream,
where the output classes are all the discrete object classes.
The objectness map is given as a ground-truth binary mask
that indicates whether a pixel belongs to any of the stuff
classes or the foreground object class. This mask is used to
exclude the penalty for pixels which belong to any of the
stuff classes in the training loss for the object stream. Sim-
ilarly, we use cross-entropy loss for the part stream. All
part classes are trained together, while non-part pixels are
ignored in training. In testing, parts are segmented on their
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Table 1. Comparison with existing datasets with semantic segmentation.

Images Obj. inst. Obj. classes Part inst. Part classes Obj. classes per image

COCO 123,287 886,284 91 0 0 3.5
ImageNet∗ 476,688 534,309 200 0 0 1.7
NYU Depth V2 1,449 34,064 894 0 0 14.1
Cityscapes 25,000 65,385 30 0 0 12.2
SUN 16,873 313,884 4,479 0 0 9.8
OpenSurfaces 22,214 71,460 160 0 0 N/A
PascalContext 10,103 ∼104,398∗∗ 540 181,770 40 5.1
ADE20K 22,210 434,826 2,693 175,961 476 9.9

∗ has only bounding boxes (no pixel-level segmentation). Sparse annotations.
∗∗ PascalContext dataset does not have instance segmentation. In order to estimate the number of instances, we find connected components (having at least 150pixels) for each
class label.

Stuff	Segmenta+on	

Objectness	Map	

Scene	Segmenta*on	

Object	Score	Map	

Part	Segmenta*on	

Stuff	Stream	

Object	Stream	

(Part	Stream)	

384x384	
192x192	

96x96	

48x48	

48x48	

48x48	

Figure 6. The framework of Cascade Segmentation Module for scene parsing. Stuff stream generates the stuff segmentation and objectness
map from the shared feature activation. The object stream then generates object segmentation by integrating the objectness map from the
stuff stream. Finally the full scene segmentation is generated by merging the object segmentation and the stuff segmentation. Similarly, part
stream takes object score map from object stream to further generate object-part segmentation. Since not all objects have part annotation,
the part stream is optional. Feature sizes are based on the Cascade-dilatedNet, the Cascade-SegNet has different but similar structures.

associated object score map given by the object stream. The
training losses for the two streams and for the three streams
are L = Lstuff+Lobject and L = Lstuff+Lobject+Lpart

respectively.

The configurations of each layer are based on the base-
line network being used. We integrate the proposed module
on two baseline networks Segnet [1] and DilatedNet [4, 25].
In the following experiments, we evaluate that the proposed
module brings great improvements for scene parsing.

4. Experiments
To train the networks for scene parsing, we select the

top 150 objects ranked by their total pixel ratios2 from the
ADE20K dataset and build a scene parsing benchmark of
ADE20K, termed as SceneParse150. Among the 150 ob-
jects, there are 35 stuff classes (i.e., wall, sky, road) and 115
discrete objects (i.e., car, person, table). The annotated pix-

2As the original images in the ADE20K dataset have various sizes,
for simplicity we rescale those large-sized images to make their minimum
heights or widths as 512 in the SceneParse150 benchmark.
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els of the 150 objects occupy 92.75% of all the pixels in the
dataset, where the stuff classes occupy 60.92%, and discrete
objects occupy 31.83%.

We map the wordnet synsets with each one of the object
names, then build up a wordnet tree through the hypernym
relations of the 150 objects shown in Fig. 7. We can see that
these objects form several semantic clusters in the tree, such
as the furniture synset node containing cabinet, desk, pool
table, and bench, the conveyance node containing car, truck,
boat, and bus, as well as the living thing node containing
shrub, grass, flower, and person. Thus, the structured object
annotation given in the dataset bridge the image annotation
to a wider knowledge base.

4.1. Scene parsing

As for baselines of scene parsing on SceneParse150
benchmark, we train three semantic segmentation networks:
SegNet [1], FCN-8s [15], and DilatedNet [4, 25]. SegNet
has encoder and decoder architecture for image segmen-
tation; FCN upsamples the activations of multiple layers
in the CNN for pixelwise segmentation; DilatedNet drops
pool4 and pool5 from fully convolutional VGG-16 network,
and replaces the following convolutions with dilated convo-
lutions (or atrous convolutions).

We integrate the proposed cascade segmentation module
on the two baseline networks: SegNet and DilatedNet. We
did not integrate it with FCN because the original FCN re-
quires a large amount of GPU memory and has skip connec-
tions across layers. For the Cascade-SegNet, two streams
share a single encoder, from conv1 1 to conv5 3, while
each stream has its own decoder, from deconv5 3 to
loss. For the Cascade-DilatedNet, the two streams split
after pool3, and keep spatial dimensions of their feature
maps afterwards. For a fair comparison and benchmark pur-
poses, the cascade networks only have stuff stream and ob-
ject stream. We train these network models using the Caffe
library [12] on NVIDIA Titan X GPUs.

Results are reported in four metrics commonly used for
semantic segmentation [15]:

• Pixel accuracy indicates the proportion of correctly
classified pixels;

• Mean accuracy indicates the proportion of correctly
classified pixels averaged over all the classes.

• Mean IoU indicates the intersection-over-union be-
tween the predicted and ground-truth pixels, averaged
over all the classes.

• Weighted IoU indicates the IoU weighted by the total
pixel ratio of each class.

Since some classes like ‘wall’ and ‘floor’ occupy far
more pixels of the images, pixel accuracy is biased to reflect

Table 2. Performance on the validation set of SceneParse150.
Networks Pixel Acc. Mean Acc. Mean IoU Weighted IoU
FCN-8s 71.32% 40.32% 0.2939 0.5733
SegNet 71.00% 31.14% 0.2164 0.5384
DilatedNet 73.55% 44.59% 0.3231 0.6014
Cascade-SegNet 71.83% 37.90% 0.2751 0.5805
Cascade-DilatedNet 74.52% 45.38% 0.3490 0.6108

Table 3. Performance of stuff and discrete object segmentation.
35 stuff 115 discrete objects

Networks Mean Acc. Mean IoU Mean Acc. Mean IoU
FCN-8s 46.74% 0.3344 38.36% 0.2816
SegNet 43.17% 0.3051 27.48% 0.1894
DilatedNet 49.03% 0.3729 43.24% 0.3080
Cascade-SegNet 40.46% 0.3245 37.12% 0.2600
Cascade-DilatedNet 49.80% 0.3779 44.04% 0.3401

the accuracy over those few large classes. Instead, mean
IoU reflects how accurately the model classifies each dis-
crete class in the benchmark. The scene parsing data and
the development toolbox are released in the Scene Parsing
Challenge hosted at ILSVRC’163. We take the average of
the pixel accuracy and mean IoU as the evaluation criteria
in the challenge.

The segmentation results of the baselines and the cas-
cade networks are listed in Table 2. Among the base-
lines, the DilatedNet achieves the best performance on the
SceneParse150. The cascade networks, Cascade-SegNet
and Cascade-DilatedNet both outperform the original base-
lines. In terms of mean IoU, the improvement brought by
the proposed cascade segmentation module for SegNet is
6%, and for DilatedNet is 2.5%. We further decompose the
performance of networks on 35 stuff and 115 discrete ob-
ject classes respectively, in Table 3. We observe that the
two cascade networks perform much better on the 115 dis-
crete objects compared to the baselines. This validates that
the design of cascade module helps improve scene parsing
for the discrete objects as they have less training data but
more visual complexity compared to those stuff classes.

Segmentation examples from the validation set are
shown in Fig. 8. Compared to the baseline SegNet and Di-
latedNet, the segmentation results from the Cascade-SegNet
and Cascade-DilatedNet are more detailed. Furthermore,
the objectness maps from the stuff stream highlight the pos-
sible discrete objects in the scenes.

4.2. Part segmentation

For part segmentation, we select the eight object classes
frequently annotated with parts: ‘person’, ‘building’, ‘car’,
‘chair’,‘table’, ‘sofa’, ‘bed’, ‘lamp’. After we filter out the
part classes of those objects with instance number smaller
than 300, there are 36 part classes included in the train-
ing and testing. We train the part stream on the Cascade-
DilatedNet used in the scene parsing.

3http://sceneparsing.csail.mit.edu
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Figure 7. Wordnet tree constructed from the 150 objects in the SceneParse150 benchmark. Clusters inside the wordnet tree represent
various hierarchical semantic relations among objects.
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Figure 10. The part segmentation accuracy grouped by the objects.

The results of joint segmentation for stuff, objects, and
object parts are shown in Fig. 9. In a single forward pass the
network with the proposed cascade module is able to parse
scenes at different levels. We use the accuracy instead of the
IoU as the metric to measure the part segmentation results,
as the parts of object instances in the dataset are not fully
annotated. The accuracy for all the parts of the eight objects
is plotted in Fig.10. The average accuracy is 55.47%.

4.3. Further applications

Accurate scene parsing leads to wider applications. Here
we take the hierarchical semantic segmentation and the au-
tomatic scene content removal as exemplar applications of
the scene parsing networks.

Hierarchical semantic segmentation. Given the word-

net tree constructed on the object annotation shown in Fig.7,
the 150 objects are hierarchically connected and have hy-
ponyms relations. Thus we could gradually merge the ob-
jects into their hyponyms so that objects with similar se-
mantics are merged at the early levels. Through this way,
we generated a hierarchical semantic segmentation of the
image shown in Fig. 11. The tree also provides a principled
way to segment more general visual concepts. For example,
to detect all furniture in a scene, we can simply merge the
hyponyms associated with each synset, such as the chair,
table, bench, and bookcase.

Automatic image content removal. Image content
removal methods typically require the users to annotate
the precise boundary of the target objects to be removed.
Here, based on the predicted object probability map from
Cascade-SegNet, we automatically identify the image re-
gion of the target objects. After cropping out the target ob-
jects using the predicted object probability map, we simply
use image completion/inpainting methods to fill the holes
in the image. Fig. 12 shows some examples of the auto-
matic image content removal. It can be seen that with the
predicted object score maps, we are able to crop out the ob-
jects from the image in a precise way. We used the image
completion technique described in [11].

5. Conclusion

In this paper, we introduced a new densely annotated
dataset with the instances of stuff, objects, and parts, cover-
ing a diverse set of visual concepts in scenes. The dataset
was carefully annotated by a single annotator to ensure pre-
cise object boundaries within the image and the consistency
of object naming across the images. A generic network de-
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Cascade-DilatedNet	

Objectness	Map	(Cascade-DilatedNet)	
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Figure 8. Ground-truths, segmentation results given by the baselines and the cascade networks, and the objectness map and stuff segmen-
tation given by the Cascade-DilatedNet.
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Test	image	

Part	ground	truth	

Object	score	map	

Part	segmenta6on	

Scene	segmenta6on	

bed	 person	 sofa	 car	 table	 lamp	
Figure 9. Part segmentation results. The middle row is the object score map predicted by the object stream for each object. The part stream
further segments the object score map into different parts.

sign called Cascade Segmentation Module was proposed for
scene parsing. It enables the convolutional neural networks
to parse scenes into stuff, objects, and object parts in cas-
cade with the state-of-the-art performance.
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Abstract

We present a study on two key character-
istics of human syntactic annotations: an-
choring and agreement. Anchoring is a well
known cognitive bias in human decision mak-
ing, where judgments are drawn towards pre-
existing values. We study the influence of
anchoring on a standard approach to creation
of syntactic resources where syntactic annota-
tions are obtained via human editing of tagger
and parser output. Our experiments demon-
strate a clear anchoring effect and reveal un-
wanted consequences, including overestima-
tion of parsing performance and lower qual-
ity of annotations in comparison with human-
based annotations. Using sentences from the
Penn Treebank WSJ, we also report systemat-
ically obtained inter-annotator agreement es-
timates for English dependency parsing. Our
agreement results control for parser bias, and
are consequential in that they are on par with
state of the art parsing performance for En-
glish newswire. We discuss the impact of our
findings on strategies for future annotation ef-
forts and parser evaluations.1

1 Introduction

Research in NLP relies heavily on the availability of
human annotations for various linguistic prediction
tasks. Such resources are commonly treated as de
facto “gold standards” and are used for both training

1The experimental data in this study will be made publicly
available.

and evaluation of algorithms for automatic annota-
tion. At the same time, human agreement on these
annotations provides an indicator for the difficulty
of the task, and can be instrumental for estimating
upper limits for the performance obtainable by com-
putational methods.

Linguistic gold standards are often constructed
using pre-existing annotations, generated by auto-
matic tools. The output of such tools is then man-
ually corrected by human annotators to produce the
gold standard. The justification for this annotation
methodology was first introduced in a set of exper-
iments on POS tag annotation conducted as part of
the Penn Treebank project (Marcus et al., 1993). In
this study, the authors concluded that tagger-based
annotations are not only much faster to obtain, but
also more consistent and of higher quality compared
to annotations from scratch. Following the Penn
Treebank, syntactic annotation projects for various
languages, including German (Brants et al., 2002),
French (Abeillé et al., 2003), Arabic (Maamouri
et al., 2004) and many others, were annotated us-
ing automatic tools as a starting point. Despite the
widespread use of this annotation pipeline, there is,
to our knowledge, little prior work on syntactic an-
notation quality and on the reliability of system eval-
uations on such data.

In this work, we present a systematic study of the
influence of automatic tool output on characteristics
of annotations created for NLP purposes. Our in-
vestigation is motivated by the hypothesis that anno-
tations obtained using such methodologies may be
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subject to the problem of anchoring, a well estab-
lished and robust cognitive bias in which human de-
cisions are affected by pre-existing values (Tversky
and Kahneman, 1974). In the presence of anchors,
participants reason relative to the existing values,
and as a result may provide different solutions from
those they would have reported otherwise. Most
commonly, anchoring is manifested as an alignment
towards the given values.

Focusing on the key NLP tasks of POS tagging
and dependency parsing, we demonstrate that the
standard approach of obtaining annotations via hu-
man correction of automatically generated POS tags
and dependencies exhibits a clear anchoring effect –
a phenomenon we refer to as parser bias. Given this
evidence, we examine two potential adverse impli-
cations of this effect on parser-based gold standards.

First, we show that parser bias entails substantial
overestimation of parser performance. In particu-
lar, we demonstrate that bias towards the output of
a specific tagger-parser pair leads to over-estimation
of the performance of these tools relative to other
tools. Moreover, we observe general performance
gains for automatic tools relative to their perfor-
mance on human-based gold standards. Second, we
study whether parser bias affects the quality of the
resulting gold standards. Extending the experimen-
tal setup of Marcus et al. (1993), we demonstrate
that parser bias may lead to lower annotation qual-
ity for parser-based annotations compared to human-
based annotations.

Furthermore, we conduct an experiment on inter-
annotator agreement for POS tagging and depen-
dency parsing which controls for parser bias. Our
experiment on a subset of section 23 of the WSJ
Penn Treebank yields agreement rates of 95.65 for
POS tagging and 94.17 for dependency parsing.
This result is significant in light of the state of the
art tagging and parsing performance for English
newswire. With parsing reaching the level of human
agreement, and tagging surpassing it, a more thor-
ough examination of evaluation resources and eval-
uation methodologies for these tasks is called for.

To summarize, we present the first study to mea-
sure and analyze anchoring in the standard parser-
based approach to creation of gold standards for
POS tagging and dependency parsing in NLP. We
conclude that gold standard annotations that are

based on editing output of automatic tools can lead
to inaccurate figures in system evaluations and lower
annotation quality. Our human agreement experi-
ment, which controls for parser bias, yields agree-
ment rates that are comparable to state of the art
automatic tagging and dependency parsing perfor-
mance, highlighting the need for a more extensive
investigation of tagger and parser evaluation in NLP.

2 Experimental Setup

2.1 Annotation Tasks

We examine two standard annotation tasks in NLP,
POS tagging and dependency parsing. In the POS
tagging task, each word in a sentence has to be cate-
gorized with a Penn Treebank POS tag (Santorini,
1990) (henceforth POS). The dependency parsing
task consists of providing a sentence with a labeled
dependency tree using the Universal Dependencies
(UD) formalism (De Marneffe et al., 2014), accord-
ing to version 1 of the UD English guidelines2. To
perform this task, the annotator is required to specify
the head word index (henceforth HIND) and relation
label (henceforth REL) of each word in the sentence.

We distinguish between three variants of these
tasks, annotation, reviewing and ranking. In the an-
notation variant, participants are asked to conduct
annotation from scratch. In the reviewing variant,
they are asked to provide alternative annotations for
all annotation tokens with which they disagree. The
participants are not informed about the source of the
given annotation, which, depending on the experi-
mental condition can be either parser output or hu-
man annotation. In the ranking task, the participants
rank several annotation options with respect to their
quality. Similarly to the review task, the participants
are not given the sources of the different annotation
options. Participants performing the annotation, re-
viewing and ranking tasks are referred to as annota-
tors, reviewers and judges, respectively.

2.2 Annotation Format

All annotation tasks are performed using a CoNLL
style text-based template, in which each word ap-
pears in a separate line. The first two columns of
each line contain the word index and the word, re-

2http://universaldependencies.org/#en
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spectively. The next three columns are designated
for annotation of POS, HIND and REL.

In the annotation task, these values have to be
specified by the annotator from scratch. In the
review task, participants are required to edit pre-
annotated values for a given sentence. The sixth col-
umn in the review template contains an additional
# sign, whose goal is to prevent reviewers from
overlooking and passively approving existing anno-
tations. Corrections are specified following this sign
in a space separated format, where each of the exist-
ing three annotation tokens is either corrected with
an alternative annotation value or approved using a
* sign. Approval of all three annotation tokens is
marked by removing the # sign. The example be-
low presents a fragment from a sentence used for the
reviewing task, in which the reviewer approves the
annotations of all the words, with the exception of
“help”, where the POS is corrected from VB to NN
and the relation label xcomp is replaced with dobj.

...
5 you PRP 6 nsubj
6 need VBP 3 ccomp
7 help VB 6 xcomp # NN * dobj
...

The format of the ranking task is exemplified be-
low. The annotation options are presented to the par-
ticipants in a random order. Participants specify the
rank of each annotation token following the vertical
bar. In this sentence, the label cop is preferred over
aux for the word “be” and xcomp is preferred over
advcl for the word “Common”.

...
8 it PRP 10 nsubjpass
9 is VBZ 10 auxpass
10 planed VBN 0 root
11 to TO 15 mark
12 be VB 15 aux-cop | 2-1
13 in IN 15 case
14 Wimbledon NNP 15 compound
15 Common NNP 10 advcl-xcomp | 2-1
...

The participants used basic validation scripts
which checked for typos and proper formatting of
the annotations, reviews and rankings.

2.3 Evaluation Metrics

We measure both parsing performance and inter-
annotator agreement using tagging and parsing eval-
uation metrics. This choice allows for a direct com-
parison between parsing and agreement results. In
this context, POS refers to tagging accuracy. We
utilize the standard metrics Unlabeled Attachment
Score (UAS) and Label Accuracy (LA) to measure
accuracy of head attachment and dependency labels.
We also utilize the standard parsing metric Labeled
Attachment Score (LAS), which takes into account
both dependency arcs and dependency labels. In all
our parsing and agreement experiments, we exclude
punctuation tokens from the evaluation.

2.4 Corpora

We use sentences from two publicly available
datasets, covering two different genres. The first
corpus, used in the experiments in sections 3 and
4, is the First Certificate in English (FCE) Cam-
bridge Learner Corpus (Yannakoudakis et al., 2011).
This dataset contains essays authored by upper-
intermediate level English learners3.

The second corpus is the WSJ part of the Penn
Treebank (WSJ PTB) (Marcus et al., 1993). Since
its release, this dataset has been the most commonly
used resource for training and evaluation of English
parsers. Our experiment on inter-annotator agree-
ment in section 5 uses a random subset of the sen-
tences in section 23 of the WSJ PTB, which is tradi-
tionally reserved for tagging and parsing evaluation.

2.5 Annotators

We recruited five students at MIT as annotators.
Three of the students are linguistics majors and
two are engineering majors with linguistics minors.
Prior to participating in this study, the annotators
completed two months of training. During training,
the students attended tutorials, and learned the an-
notation guidelines for PTB POS tags, UD guide-
lines, as well as guidelines for annotating challeng-
ing syntactic structures arising from grammatical er-
rors. The students also annotated individually six

3The annotation bias and quality results reported in sections
3 and 4 use the original learner sentences, which contain gram-
matical errors. These results were replicated on the error cor-
rected versions of the sentences.
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practice batches of 20-30 sentences from the En-
glish Web Treebank (EWT) (Silveira et al., 2014)
and FCE corpora, and resolved annotation disagree-
ments during group meetings.

Following the training period, the students anno-
tated a treebank of learner English (Berzak et al.,
2016) over a period of five months, three of which
as a full time job. During this time, the students
continued attending weekly meetings in which fur-
ther annotation challenges were discussed and re-
solved. The annotation was carried out for sentences
from the FCE dataset, where both the original and
error corrected versions of each sentence were an-
notated and reviewed. In the course of the anno-
tation project, each annotator completed approxi-
mately 800 sentence annotations, and a similar num-
ber of sentence reviews. The annotations and re-
views were done in the same format used in this
study. With respect to our experiments, the exten-
sive experience of our participants and their prior
work as a group strengthen our results, as these char-
acteristics reduce the effect of anchoring biases and
increase inter-annotator agreement.

3 Parser Bias

Our first experiment is designed to test whether ex-
pert human annotators are biased towards POS tags
and dependencies generated by automatic tools. We
examine the common out-of-domain annotation sce-
nario, where automatic tools are often trained on an
existing treebank in one domain, and used to gener-
ate initial annotations to speed-up the creation of a
gold standard for a new domain. We use the EWT
UD corpus as the existing gold standard, and a sam-
ple of the FCE dataset as the new corpus.

Procedure
Our experimental procedure, illustrated in figure

1(a) contains a set of 360 sentences (6,979 tokens)
from the FCE, for which we generate three gold
standards: one based on human annotations and two
based on parser outputs. To this end, for each sen-
tence, we assign at random four of the participants to
the following annotation and review tasks. The fifth
participant is left out to perform the quality ranking
task described in section 4.

The first participant annotates the sentence from
scratch, and a second participant reviews this an-

Turbo RBG

Sentence

Annotators

Judge

Reviewers

Human Gold Turbo Gold RBG Gold

(b) Quality

(a) Bias

Figure 1: Experimental setup for parser bias (a) and annotation

quality (b) on 360 sentences (6,979 tokens) from the FCE. For

each sentence, five human annotators are assigned at random

to one of three roles: annotation, review or quality assessment.

In the bias experiment, presented in section 3, every sentence

is annotated by a human, Turbo parser (based on Turbo tag-

ger output) and RBG parser (based on Stanford tagger output).

Each annotation is reviewed by a different human participant to

produce three gold standards of each sentence: “Human Gold”,

“Turbo Gold” and “RBG Gold”. The fifth annotator performs

a quality assessment task described in section 4, which requires

to rank the three gold standards in cases of disagreement.

notation. The overall agreement of the reviewers
with the annotators is 98.24 POS, 97.16 UAS, 96.3
LA and 94.81 LAS. The next two participants re-
view parser outputs. One participant reviews an an-
notation generated by the Turbo tagger and parser
(Martins et al., 2013). The other participant reviews
the output of the Stanford tagger (Toutanova et al.,
2003) and RBG parser (Lei et al., 2014). The taggers
and parsers were trained on the gold annotations of
the EWT UD treebank, version 1.1. Both parsers use
predicted POS tags for the FCE sentences.

Assigning the reviews to the human annotations
yields a human based gold standard for each sen-
tence called “Human Gold”. Assigning the reviews
to the tagger and parser outputs yields two parser-
based gold standards, “Turbo Gold” and “RBG
Gold”. We chose the Turbo-Turbo and Stanford-
RBG tagger-parser pairs as these tools obtain com-
parable performance on standard evaluation bench-

2218



Turbo RBG
POS UAS LA LAS POS UAS LA LAS

Human Gold 95.32 87.29 88.35 82.29 95.59 87.19 88.03 82.05
Turbo Gold 97.62 91.86 92.54 89.16 96.64 89.16 89.75 84.86
Error Reduction % 49.15 35.96 35.97 38.79 23.81 15.38 14.37 15.65
RBG Gold 96.43 88.65 89.95 84.42 97.76 91.22 91.84 87.87
Error Reduction % 23.72 10.7 13.73 12.03 49.21 31.46 31.83 32.42

Table 1: Annotator bias towards taggers and parsers on 360 sentences (6,979 tokens) from the FCE. Tagging and parsing results

are reported for the Turbo parser (based on the output of the turbo Tagger) and RBG parser (based on the output of the Stanford

tagger) on three gold standards. Human Gold are manual corrections of human annotations. Turbo Gold are manual corrections

of the output of Turbo tagger and Turbo parser. RBG Gold are manual corrections of the Stanford tagger and RBG parser. Error

reduction rates are reported relative to the results obtained by the two tagger-parser pairs on the Human Gold annotations. Note that

(1) The parsers perform equally well on Human Gold. (2) Each parser performs better than the other parser on its own reviews. (3)

Each parser performs better on the reviews of the other parser compared to its performance on Human Gold. The differences in (2)

and (3) are statistically significant with p� 0.001 using McNemar’s test.

marks, while yielding substantially different anno-
tations due to different training algorithms and fea-
ture sets. For our sentences, the agreement be-
tween the Turbo tagger and Stanford tagger is 96.97
POS. The agreement between the Turbo parser and
RBG parser based on the respective tagger outputs
is 90.76 UAS, 91.6 LA and 87.34 LAS.

Parser Specific and Parser Shared Bias
In order to test for parser bias, in table 1 we

compare the performance of the Turbo-Turbo and
Stanford-RBG tagger-parser pairs on our three gold
standards. First, we observe that while these tools
perform equally well on Human Gold, each tagger-
parser pair performs better than the other on its own
reviews. These parser specific performance gaps are
substantial, with an average of 1.15 POS, 2.63 UAS,
2.34 LA and 3.88 LAS between the two conditions.
This result suggests the presence of a bias towards
the output of specific tagger-parser combinations.
The practical implication of this outcome is that a
gold standard created by editing an output of a parser
is likely to boost the performance of that parser in
evaluations and over-estimate its performance rela-
tive to other parsers.

Second, we note that the performance of each of
the parsers on the gold standard of the other parser is
still higher than its performance on the human gold
standard. The average performance gap between
these conditions is 1.08 POS, 1.66 UAS, 1.66 LA
and 2.47 LAS. This difference suggests an annota-
tion bias towards shared aspects in the predictions

of taggers and parsers, which differ from the human
based annotations. The consequence of this obser-
vation is that irrespective of the specific tool that
was used to pre-annotate the data, parser-based gold
standards are likely to result in higher parsing per-
formance relative to human-based gold standards.

Taken together, the parser specific and parser
shared effects lead to a dramatic overall average er-
ror reduction of 49.18% POS, 33.71% UAS, 34.9%
LA and 35.61% LAS on the parser-based gold stan-
dards compared to the human-based gold standard.
To the best of our knowledge, these results are the
first systematic demonstration of the tendency of the
common approach of parser-based creation of gold
standards to yield biased annotations and lead to
overestimation of tagging and parsing performance.

4 Annotation Quality

In this section we extend our investigation to ex-
amine the impact of parser bias on the quality of
parser-based gold standards. To this end, we per-
form a manual comparison between human-based
and parser-based gold standards.

Our quality assessment experiment, depicted
schematically in figure 1(b), is a ranking task. For
each sentence, a randomly chosen judge, who did
not annotate or review the given sentence, ranks dis-
agreements between the three gold standards Human
Gold, Turbo Gold and RBG Gold, generated in the
parser bias experiment in section 3.

Table 2 presents the preference rates of judges
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Human Gold Preference % POS HIND REL
Turbo Gold 64.32* 63.96* 61.5*
# disagreements 199 444 439
RBG Gold 56.72 61.38* 57.73*
# disagreements 201 435 440

Table 2: Human preference rates for a human-based gold stan-

dard Human Gold over the two parser-based gold standards

Turbo Gold and RBG Gold. # disagreements denotes the num-

ber of tokens that differ between Human Gold and the respec-

tive parser-based gold standard. Statistically significant values

for a two-tailed Z test with p < 0.01 are marked with *. Note

that for both tagger-parser pairs, human judges tend to prefer

human-based over parser-based annotations.

for the human-based gold standard over each of the
two parser-based gold standards. In all three eval-
uation categories, human judges tend to prefer the
human-based gold standard over both parser-based
gold standards. This result demonstrates that the ini-
tial reduced quality of the parser outputs compared
to human annotations indeed percolates via anchor-
ing to the resulting gold standards.

The analysis of the quality assessment experi-
ment thus far did not distinguish between cases
where the two parsers agree and where they dis-
agree. In order to gain further insight into the rela-
tion between parser bias and annotation quality, we
break down the results reported in table 2 into two
cases which relate directly to the parser specific and
parser shared components of the tagging and pars-
ing performance gaps observed in the parser bias re-
sults reported in section 3. In the first case, called
“parser specific approval”, a reviewer approves a
parser annotation which disagrees both with the out-
put of the other parser and the Human Gold anno-
tation. In the second case, called “parser shared ap-
proval”, a reviewer approves a parser output which
is shared by both parsers but differs with respect to
Human Gold.

Table 3 presents the judge preference rates for the
Human-Gold annotations in these two scenarios. We
observe that cases in which the parsers disagree are
of substantially worse quality compared to human-
based annotations. However, in cases of agreement
between the parsers, the resulting gold standards do
not exhibit a clear disadvantage relative to the Hu-
man Gold annotations.

This result highlights the crucial role of parser

Human Gold Preference % POS HIND REL
Turbo specific approval 85.42* 78.69* 80.73*
# disagreements 48 122 109
RBG specific approval 73.81* 77.98* 77.78*
# disagreements 42 109 108
Parser shared approval 51.85 58.49* 51.57
# disagreements 243 424 415

Table 3: Breakdown of the Human preference rates for the

human-based gold standard over the parser-based gold stan-

dards in table 2, into cases of agreement and disagreement be-

tween the two parsers. Parser specific approval are cases in

which a parser output approved by the reviewer differs from

both the output of the other parser and the Human Gold anno-

tation. Parser shared approval denotes cases where an approved

parser output is identical to the output of the other parser but dif-

fers from the Human Gold annotation. Statistically significant

values for a two-tailed Z test with p < 0.01 are marked with

*. Note that parser specific approval is substantially more detri-

mental to the resulting annotation quality compared to parser

shared approval.

specific approval in the overall preference of judges
towards human-based annotations in table 2. Fur-
thermore, it suggests that annotations on which mul-
tiple state of the art parsers agree are of sufficiently
high accuracy to be used to save annotation time
without substantial impact on the quality of the re-
sulting resource. In section 7 we propose an annota-
tion scheme which leverages this insight.

5 Inter-annotator Agreement

Agreement estimates in NLP are often obtained in
annotation setups where both annotators edit the
same automatically generated input. However, in
such experimental conditions, anchoring can intro-
duce cases of spurious disagreement as well as spu-
rious agreement between annotators due to align-
ment of one or both participants towards the given
input. The initial quality of the provided annotations
in combination with the parser bias effect observed
in section 3 may influence the resulting agreement
estimates. For example, in Marcus et al. (1993) an-
notators were shown to produce POS tagging agree-
ment of 92.8 on annotation from scratch, compared
to 96.5 on reviews of tagger output.

Our goal in this section is to obtain estimates for
inter-annotator agreement on POS tagging and de-
pendency parsing that control for parser bias, and
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as a result, reflect more accurately human agree-
ment on these tasks. We thus introduce a novel
pipeline based on human annotation only, which
eliminates parser bias from the agreement measure-
ments. Our experiment extends the human-based an-
notation study of Marcus et al. (1993) to include
also syntactic trees. Importantly, we include an ad-
ditional review step for the initial annotations, de-
signed to increase the precision of the agreement
measurements by reducing the number of errors in
the original annotations.

Sentence

Scratch

Scratch 

reviewed

Figure 2: Experimental setup for the inter-annotator agreement

experiment. 300 sentences (7,227 tokens) from section 23 of

the PTB-WSJ are annotated and reviewed by four participants.

The participants are assigned to the following tasks at random

for each sentence. Two participants annotate the sentence from

scratch, and the remaining two participants review one of these

annotations each. Agreement is measured on the annotations

(“scratch”) as well after assigning the review edits (“scratch re-

viewed”).

For this experiment, we use 300 sentences (7,227
tokens) from section 23 of the PTB-WSJ, the stan-
dard test set for English parsing in NLP. The exper-
imental setup, depicted graphically in figure 2, in-
cludes four participants randomly assigned for each
sentence to annotation and review tasks. Two of the
participants provide the sentence with annotations
from scratch, while the remaining two participants
provide reviews. Each reviewer edits one of the
annotations independently, allowing for correction
of annotation errors while maintaining the indepen-
dence of the annotation sources. We measure agree-
ment between the initial annotations (“scratch”), as
well as the agreement between the reviewed versions
of our sentences (“scratch reviewed”).

The agreement results for the annotations and the
reviews are presented in table 4. The initial agree-

ment rate on POS annotation from scratch is higher
than in (Marcus et al., 1993). This difference is
likely to arise, at least in part, due to the fact that
their experiment was conducted at the beginning
of the annotation project, when the annotators had
a more limited annotation experience compared to
our participants. Overall, we note that the agree-
ment rates from scratch are relatively low. The re-
view round raises the agreement on all the evalua-
tion categories due to elimination of annotation er-
rors present the original annotations.

POS UAS LA LAS
scratch 94.78 93.07 92.3 88.32
scratch reviewed 95.65 94.17 94.04 90.33

Table 4: Inter-annotator agreement on 300 sentences (7,227 to-

kens) from the PTB-WSJ section 23. “scratch” is agreement

on independent annotations from scratch. “scratch reviewed” is

agreement on the same sentences after an additional indepen-

dent review round of the annotations.

Our post-review agreement results are consequen-
tial in light of the current state of the art performance
on tagging and parsing in NLP. For more than a
decade, POS taggers have been achieving over 97%
accuracy with the PTB POS tag set on the PTB-WSJ
test set. For example, the best model of the Stanford
tagger reported in Toutanova et al. (2003) produces
an accuracy of 97.24 POS on sections 22-24 of the
PTB-WSJ. These accuracies are above the human
agreement in our experiment.

With respect to dependency parsing, recent
parsers obtain results which are on par or higher than
our inter-annotator agreement estimates. For exam-
ple, Weiss et al. (2015) report 94.26 UAS and An-
dor et al. (2016) report 94.61 UAS on section 23
of the PTB-WSJ using an automatic conversion of
the PTB phrase structure trees to Stanford depen-
dencies (De Marneffe et al., 2006). These results
are not fully comparable to ours due to differences
in the utilized dependency formalism and the auto-
matic conversion of the annotations. Nonetheless,
we believe that the similarities in the tasks and eval-
uation data are sufficiently strong to indicate that
dependency parsing for standard English newswire
may be reaching human agreement levels.
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6 Related Work

The term “anchoring” was coined in a seminal paper
by Tversky and Kahneman (1974), which demon-
strated that numerical estimation can be biased by
uninformative prior information. Subsequent work
across various domains of decision making con-
firmed the robustness of anchoring using both in-
formative and uninformative anchors (Furnham and
Boo, 2011). Pertinent to our study, anchoring bi-
ases were also demonstrated when the participants
were domain experts, although to a lesser degree
than in the early anchoring experiments (Wilson et
al., 1996; Mussweiler and Strack, 2000).

Prior work in NLP examined the influence of
pre-tagging (Fort and Sagot, 2010) and pre-parsing
(Skjærholt, 2013) on human annotations. Our work
introduces a systematic study of this topic using a
novel experimental framework as well as substan-
tially more sentences and annotators. Differently
from these studies, our methodology enables charac-
terizing annotation bias as anchoring and measuring
its effect on tagger and parser evaluations.

Our study also extends the POS tagging exper-
iments of Marcus et al. (1993), which compared
inter-annotator agreement and annotation quality on
manual POS tagging in annotation from scratch and
tagger-based review conditions. The first result re-
ported in that study was that tagger-based editing in-
creases inter-annotator agreement compared to an-
notation from scratch. Our work provides a novel
agreement benchmark for POS tagging which re-
duces annotation errors through a review process
while controlling for tagger bias, and obtains agree-
ment measurements for dependency parsing. The
second result reported in Marcus et al. (1993) was
that tagger-based edits are of higher quality com-
pared to annotations from scratch when evaluated
against an additional independent annotation. We
modify this experiment by introducing ranking as an
alternative mechanism for quality assessment, and
adding a review round for human annotations from
scratch. Our experiment demonstrates that in this
configuration, parser-based annotations are of lower
quality compared to human-based annotations.

Several estimates of expert inter-annotator agree-
ment for English parsing were previously reported.
However, most such evaluations were conducted us-

ing annotation setups that can be affected by an
anchoring bias (Carroll et al., 1999; Rambow et
al., 2002; Silveira et al., 2014). A notable excep-
tion is the study of Sampson and Babarczy (2008)
who measure agreement on annotation from scratch
for English parsing in the SUSANNE framework
(Sampson, 1995). The reported results, however,
are not directly comparable to ours, due to the use
of a substantially different syntactic representation,
as well as a different agreement metric. Their study
further suggests that despite the high expertise of the
annotators, the main source of annotation disagree-
ments was annotation errors. Our work alleviates
this issue by using annotation reviews, which reduce
the number of erroneous annotations while main-
taining the independence of the annotation sources.
Experiments on non-expert dependency annotation
from scratch were previously reported for French,
suggesting low agreement rates (79%) with an ex-
pert annotation benchmark (Gerdes, 2013).

7 Discussion

We present a systematic study of the impact of an-
choring on POS and dependency annotations used
in NLP, demonstrating that annotators exhibit an an-
choring bias effect towards the output of automatic
annotation tools. This bias leads to an artificial boost
of performance figures for the parsers in question
and results in lower annotation quality as compared
with human-based annotations.

Our analysis demonstrates that despite the adverse
effects of parser bias, predictions that are shared
across different parsers do not significantly lower the
quality of the annotations. This finding gives rise
to the following hybrid annotation strategy as a po-
tential future alternative to human-based as well as
parser-based annotation pipelines. In a hybrid anno-
tation setup, human annotators review annotations
on which several parsers agree, and complete the re-
maining annotations from scratch. Such a strategy
would largely maintain the annotation speed-ups of
parser-based annotation schemes. At the same time,
it is expected to achieve annotation quality compa-
rable to human-based annotation by avoiding parser
specific bias, which plays a pivotal role in the re-
duced quality of single-parser reviewing pipelines.

Further on, we obtain, to the best of our knowl-
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edge for the first time, syntactic inter-annotator
agreement measurements on WSJ-PTB sentences.
Our experimental procedure reduces annotation er-
rors and controls for parser bias. Despite the de-
tailed annotation guidelines, the extensive experi-
ence of our annotators, and their prior work as a
group, our experiment indicates rather low agree-
ment rates, which are below state of the art tagging
performance and on par with state of the art parsing
results on this dataset. We note that our results do
not necessarily reflect an upper bound on the achiev-
able syntactic inter-annotator agreement for English
newswire. Higher agreement rates could in princi-
ple be obtained through further annotator training,
refinement and revision of annotation guidelines, as
well as additional automatic validation tests for the
annotations. Nonetheless, we believe that our esti-
mates reliably reflect a realistic scenario of expert
syntactic annotation.

The obtained agreement rates call for a more ex-
tensive examination of annotator disagreements on
parsing and tagging. Recent work in this area has
already proposed an analysis of expert annotator dis-
agreements for POS tagging in the absence of anno-
tation guidelines (Plank et al., 2014). Our annota-
tions will enable conducting such studies for annota-
tion with guidelines, and support extending this line
of investigation to annotations of syntactic depen-
dencies. As a first step towards this goal, we plan
to carry out an in-depth analysis of disagreement
in the collected data, characterize the main sources
of inconsistent annotation and subsequently formu-
late further strategies for improving annotation ac-
curacy. We believe that better understanding of hu-
man disagreements and their relation to disagree-
ments between humans and parsers will also con-
tribute to advancing evaluation methodologies for
POS tagging and syntactic parsing in NLP, an im-
portant topic that has received only limited attention
thus far (Schwartz et al., 2011; Plank et al., 2015).

Finally, since the release of the Penn Treebank in
1992, it has been serving as the standard benchmark
for English parsing evaluation. Over the past few
years, improvements in parsing performance on this
dataset were obtained in small increments, and are
commonly reported without a linguistic analysis of
the improved predictions. As dependency parsing
performance on English newswire may be reaching

human expert agreement, not only new evaluation
practices, but also more attention to noisier domains
and other languages may be in place.
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