Pathway-centric personalized precision psychiatry by single-cell multiomics-genetics-EHR integration

scRNA Profiling to Define Molecular
Components of Psychiatric Disorders
Relating Donor Labels to Cell-Level
Phenotypes with CPP
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Cross-Disorder Single-Cell Analysis of Psychiatric Disorders. (a) Multi-disorder
Cell-Projected Phenotype (CPP) methodology. Cells from many donors, with diverse
condition labels, are jointly embedded. A KNN graph is constructed from this
embedding, and local cell transcriptional neighborhoods are defined as cells and their
immediate neighbors. Differential case/control abundance in neighborhoods can be
quantified, and these enrichments are used to define cell-level phenotypes. (b) Cohort
metadata. (c-f) UMAP projection of sequenced cells are labeled by (c) cell type (d)
donor diagnossis (e) bipolar disorder CPP score or (f) schizophrenia CPP score. (g)
Mean CPP score per donor in 3 representative cell types. SZ and BD donors both
exhibit elevated scores for either disorder across cell types, consistent with shared
transcriptional disruptions across disorders.
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