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Infrastructure Example Analysis

Design 1 is an ISAAC-like [5] design using memristors cells. Design 2 uses SRAM cells 
[4] and 2-way analog sum devices [2]. Tested with AlexNet layer 1, large batch size.

PIM Crossbar multiply-accumulates inputs with 
programmed conductances.
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✓ Full Understanding of Design Space

✓ Fair Comparison of Various Systems 

and Design Choices

✓ Fair Comparison of PIM and Non-
PIM Architectures

✓ Discovery of New Architectures
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PIM architectures efficiently compute matrix multiplications and convolutions, the 
core computations of modern DNNs.
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Analog MAC is very efficient; peripherals 
dominate PIM area/energy costs [5].
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Digital-Analog-Converters feed in a few bits at a 
time, enabling sparse data optimizations [9].
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Data in PIM-Crossbars can be replicated to complete multiple convolution steps / vector multiplications 
at once or stored across multiple devices to increase resolution [2].
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Analog components can reduce expensive converter use, 
but may increase converter complexity [2, 10].
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Cell choice can have orders-
of-magnitude effect on the 

read energy, write energy, area, 
and endurance of the system [4]. 
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PIM efficiency has 
inspired many designs
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