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Infroduction Representing High-dimensional point clouds

Representing data using diffusion maps operators!

» A manifold learning technique, approximating the heat
kernel of the underlying manifold, e~ 2, for some dataset X:

» Comparing high-dimensional point clouds with no adequate
models is challenging.

» The manifold hypothesis motivates comparing such datasets
through the geometric properties of their underlying
manifold.
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» The Laplace-Beltrami operator and heat kernel provide
geometrically-motivated data representations in various
manifold learning techniques. However, comparing these
representations typically requires costly pointwise alignment.

W(i,j) =

» W is SPD. The space of SPD matrices forms a Riemannian

» One approach that avoids these costs is comparing spectral manifold, when endowed with a proper metric.

properties of these operators instead, e.g. the heat trace. » The log-Euclidean (LE) metric is one suitable choice,

providing several computational and  algorithmic
advantages in our seffing.

dg (W, W5) = [[log(Wy) — log(W>)||

» We propose a new spectral method for comparing
unaligned datasets, derived by taking info account the
symmetric positive-definite (SPD) structure of heat-kernels.

Eigenvalue Approximation | Gene Expression Analysis

» Recovering time frajectory
of cell differentiation based
on multiple day scRNA data
LES: Ours IMD?3 GS

Distance for Unaligned Datasefs

» Most metrics comparing W, of different datasets, including
the LE metric, require full pointwise alignment.

» We estimate the leading
eigenvalues with a moditied
Nystrom method?, resulting

» Our distance is defined by lower-bounding, regularizing and .
In clear error bounds:

truncating the LE metric, overcoming the alignment need:
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Data visualization: -

» The regularization term, vy,

W.
1 facilitates better bounds.

Analysis of Neural Network Embeddings

Predicting Success of NN Embedding in Few-Shot Learning Comparing NN Layer Embeddings

Layer position classification accuracy:
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Training only the
classifier based on
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Correlations between classification accuracy and LES distance of embeddings:
FC100 I-shot FCI100 5-shot FC100 10-shot CIFAR-FS I-shot CIFAR-ES 5-shot CIFAR-ES 10-shot

Training the full Acc 66.2%

Same Input
Different input

Acc 98.2%
B Acc 96%,
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