

Log-Euclidean Signatures for Intrinsic Distances Between Unaligned Datasets

*Tal Shnitzer, **Mikhail Yurochkin,**Kristjan Greenewald, *Justin Solomon

*GDP, CSAIL, MIT **MIT-IBM Watson AI Lab

 Geometrically-motivated adia representations in various manifold learning techniques. However, comparing these representations typically requires costly pointwise alignment. One approach that avoids these costs is comparing spectral properties of these operators instead, e.g. the heat trace. We propose a new spectral method for comparing unaligned datasets, derived by taking into account the symmetric positive-definite (SPD) structure of heat-kernels. 	 Riemannian manifold of SPD matrices W is SPD. The space of SPD matrices forms a Riemannian manifold, when endowed with a proper metric. The log-Euclidean (LE) metric is one suitable choice, providing several computational and algorithmic advantages in our setting. d_{LE}(W₁, W₂) = log(W₁) − log(W₂) _F 		
Distance for Unaligned Datasets	Eigenvalue Approximation	Gene Expression Analysis	
 Most metrics comparing W_ℓ of different datasets, including the LE metric, require full pointwise alignment. Our distance is defined by lower-bounding, regularizing and truncating the LE metric, overcoming the alignment need: ^N (log λ_i⁽¹⁾ - log λ_i⁽²⁾)² 	• We estimate the leading eigenvalues with a modified Nyström method ² , resulting in clear error bounds: $\mathbb{E}\left[\sum_{i=1}^{K} \log(\lambda_{i} + \gamma) - \log(\hat{\lambda}_{i} + \gamma) \right]$	Recovering time trajectory of cell differentiation based on multiple day scRNA data LES: Ours IMD ³ GS	
$d_{LES}^{2}(W_{1}, W_{2}) = \sum_{i=1}^{K} \left(\log \left(\lambda_{i}^{(1)} + \gamma \right) - \log \left(\lambda_{i}^{(2)} + \gamma \right) \right)^{2}$ W_{1} W_{2}	$\begin{bmatrix} \sum_{i=1}^{N} & 1.5K \\ (M - K - 1)(\lambda_{K} + \gamma) \end{bmatrix} \sum_{i=K+1}^{N} \lambda_{i}$ The regularization term, γ , facilitates better bounds.	$\int_{f_1}^{f_1} 0.79 \text{Corr.} = 0.28 \text{Corr.} = 0.03$ Correlations with time Data visualization: $\int_{10}^{Day} \int_{10}^{15} \int_{10}^{10} \int_{10}^{10}$	

Analysis of Neural Network Embeddings

Predicting Success of NN Embedding in Few-Shot Learning

Correlations between classification accuracy and LES distance of embeddings:

	FC100 1-shot	FC100 5-shot	FC100 10-shot	CIFAR-FS 1-shot	CIFAR-FS 5-shot	CIFAR-FS 10-shot
Acc.	38.19±0.48%	$54.45 {\pm} 0.49\%$	$60.52 {\pm} 0.48\%$	$70.79 {\pm} 0.69\%$	83.98±0.44%	87.11±0.40%
LES	-0.934 ±0.034	-0.945±0.032	-0.935 ±0.032	-0.671 ± 0.128	-0.698±0.155	-0.657±0.175
IMD	-0.184 ± 0.250	-0.303 ± 0.225	-0.210 ± 0.235	-0.151 ± 0.225	-0.015 ± 0.220	-0.032 ± 0.281
OT	$0.739 {\pm} 0.102$	0.605 ± 0.126	0.579 ± 0.133	$0.453 {\pm} 0.170$	0.269 ± 0.214	0.180 ± 0.231
GW	-0.919 ± 0.034	-0.921 ± 0.046	-0.914 ± 0.045	-0.677±0.126	-0.672 ± 0.167	-0.582 ± 0.171

R.R. Coifman and S. Lafon, "Diffusion Maps", ACHA, 2006.
 J.A. Tropp et al. "Fixed rank approximation of a positive-semidefinite matrix from streaming data", NeurIPS, 2017
 A. Tsitsulin et al. "The shape of data: Intrinsic distance for data distributions", ICLR, 2020
 S. Kornblith et al. "Similarity of neural network representations revisited", ICML, PMLR, 2019

Comparing NN Layer Embeddings

Layer position classification accuracy:

	LES	IMD ³	CKA ⁴
Same input	96.5%	85.2%	97.3%
Different input	95.8%	81%	-

Accepted to ICML 2022

This work is part of the Model Fusion with Optimal Transport MIT-IBM project