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► Comparing high-dimensional point clouds with no adequate

models is challenging.

► The manifold hypothesis motivates comparing such datasets

through the geometric properties of their underlying

manifold.

► The Laplace-Beltrami operator and heat kernel provide

geometrically-motivated data representations in various

manifold learning techniques. However, comparing these

representations typically requires costly pointwise alignment.

► One approach that avoids these costs is comparing spectral

properties of these operators instead, e.g. the heat trace.

► We propose a new spectral method for comparing

unaligned datasets, derived by taking into account the

symmetric positive-definite (SPD) structure of heat-kernels.

Introduction Representing High-dimensional point clouds

Representing data using diffusion maps operators1

► A manifold learning technique, approximating the heat

kernel of the underlying manifold, 𝑒−𝑡Δ, for some dataset 𝑋:
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Riemannian manifold of SPD matrices

► 𝑊 is SPD. The space of SPD matrices forms a Riemannian

manifold, when endowed with a proper metric.

► The log-Euclidean (LE) metric is one suitable choice,

providing several computational and algorithmic

advantages in our setting.
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Analysis of Neural Network Embeddings

► Most metrics comparing 𝑊ℓ of different datasets, including

the LE metric, require full pointwise alignment.

► Our distance is defined by lower-bounding, regularizing and

truncating the LE metric, overcoming the alignment need:
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► We estimate the leading

eigenvalues with a modified

Nyström method2, resulting

in clear error bounds:
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► The regularization term, 𝛾 ,

facilitates better bounds.
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Predicting Success of NN Embedding in Few-Shot Learning Comparing NN Layer Embeddings
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LES IMD3 CKA4

Same input 96.5% 85.2% 97.3%

Different input 95.8% 81% -

Layer position classification accuracy:
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Correlations between classification accuracy and LES distance of embeddings:
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Gene Expression Analysis

► Recovering time trajectory

of cell differentiation based

on multiple day scRNA data
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