Sparseloop: An Analytical Approach To Sparse Tensor Accelerator Modeling

Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, Joel S. Emer

3. Modeling Framework

Design Space Classification

We classify common sparsity-aware acceleration techniques into three high-level sparse acceleration features (SAFs)

1. Representation format 2. Gating

Gating on B accesses based on A

3. Skipping

Skipping on B accesses based on A

Modularized Modeling Process with Tractable Complexity

Module Actions

Step1: Derives the uncompressed data movement and the number of dense computes.

Step2: Analyzes the impact of each SAF based on statistical characterization of workload data (e.g., uniform distribution).

Step3: Calculates the final energy and cycle count based on microarchitectural details (e.g., technology node).

Tutorial Website: http://accelergy.mit.edu/sparse_tutorial.html

Experimental Results

>2000x faster than cycle-level simulations.

Accurately models well-known sparse tensor accelerators with 0.1% to 8% average error Provides the flexibility to evaluate and explore accelerators with various architecture topologies, dataflows, and SAFs, running workloads with various sparsity characteristics.

Example sweep on SAF implementations and workloads Different energy breakdown across components for different workloads

