

Observation & Motivation

	Input: who was the first Nigerian to win the Nobel Prize, in which year?																								
	Output: <u>Wole Soyinka</u> was the first Nigerian to win the Nobel Prize, in <u>1986</u> .																								
	Γ	_w	ole	_So	У	ink	а	_was	_the	_first	_Niger	ian	_to	_win	_the	_Nobel	_Prize	,	_in	_	1	9	8	6	
	30	1.9	0.0	0.03	1.76	0.0	0.0	6.45	0.29	0.07	0.6	0.01	0.48	0.13	0.1	0.02	0.11	2.97	1.84	0.12	0.0	0.0	0.0	7.56	0.23
	28	4.78	0.04	0.42	10.5	0.05	0.07	3.65	0.21	0.02	0.63	0.0	0.29	0.17	0.02	0.04	0.02	4.77	1.89	6.13	9.76	12.4	15.16	16.86	0.16
	26	11.41	3.15	7.15	12.67	5.28	3.5	1.22	0.08	0.02	0.75	0.0	0.18	0.15	0.12	0.05	0.04	3.77	1.19	4.58	16.56	19.31	18.66	19.67	0.13
	24	13.21	8.6	10.01	14.28	8.99	8.44	0.8	0.26	0.02	0.44	0.0	2.51	0.08	7.37	0.06	0.04	2.08	0.71	6.68	18.72	23.84	21.68	21.31	0.1
e L	22	14.26	18.81	11.61	15.7	12.34	9.29	0.75	4.57	0.03	0.24	0.0	2.4	0.09	6.57	0.05	0.02	2.03	0.38	8.27	17.82	22.89	22.98	21.46	2.07
Ž	20	10.18	15.95	12.99	16.32	13.52	11.07	1.85	9.78	0.03	0.06	0.04	0.39	0.73	6.28	0.02	0.03	11.41	4.36	9.19	16.84	19.57	20.38	19.45	10.26
<u></u>	18	7.75	15.97	12.59	16.46	14.52	12.25	7.76	8.33	5.15	6.47	2.48	5.73	10.67	7.41	1.29	8.92	13.57	10.99	12.59	14.02	19.57	16.98	15.63	12.9
<u> </u>	16	8.99	16.05	12.81	17.45	15.47	13.52	9.8	11.18	10.73	10.97	12.1	11.4	14.52	13.09	10.34	11.86	14.34	12.16	13.7	13.73	19.44	17.05	15.85	13.47
<u>a</u>	14	9.06	16.14	13.33	17.83	16.24	14.0	10.63	13.03	12.78	12.66	15.07	13.2	16.06	14.71	13.61	13.61	14.09	12.04	14.19	14.4	19.76	17.17	16.24	12.87
	12	9.75	16.3	13.47	17.92	16.45	14.94	11.52	13.95	14.11	13.92	15.82	14.23	16.76	15.6	14.81	14.42	14.47	13.48	14.47	15.02	19.44	17.4	16.45	13.57
τļ	10	10.22	16.4	13.63	18.1	16.24	15.52	12.4	14.54	14.71	14.2	16.34	14.85	16.78	15.66	15.02	15.06	14.53	13.8	14.13	14.96	19.63	17.7	16.62	13.42
·	8	10.66	16.57	14.04	18.24	16.2	16.21	12.66	14.42	15.09	14.09	16.82	14.71	16.88	15.57	15.2	15.31	14.44	13.89	14.47	15.15	19.93	17.93	16.81	13.9
	6	10.68	16.49	14.2	18.38	16.3	16.62	13.18	14.53	15.4	14.27	17.81	15.44	16.98	15.82	15.43	15.8	14.27	14.16	14.65	15.54	19.79	18.2	17.14	13.92
	4	10.65	16.59	14.31	18.53	16.38	16.77	13.43	15.02	15.99	14.53	18.29	15.5	17.29	16.33	15.9	16.14	14.31	14.53	14.69	15.81	19.93	18.38	17.4	14.25
	2	10.8	16.69	14.29	18.64	16.74	16.9	13.36	15.23	15.97	14.76	18.68	15.45	17.31	16.71	16.05	16.46	14.58	14.51	14.84	16.02	20.13	18.6	17.67	14.44
	0	11.0	16.69	14.51	18.78	16.82	17.09	13.54	15.6	16.47	14.88	19.12	15.88	17.45	16.98	16.26	16.87	14.85	15.34	15.16	16.34	20.46	18.79	17.83	14.95

- <u>X</u>: generated tokens; <u>Y</u>: layer index; <u>Item</u>: JS-Div between *early logits* & *final logits*
- When predicting factual information, LLaMA tends to *change the predictions in* the higher layers. Otherwise, predictions usually have been decided by early layers
- Previous study also found "knowledge neurons" located in topmost layers [1]
- **Hypothesis:** Contrasting the layers before/after the radical change may amplify the knowledge in higher layers and make the model more factual [2]

<u>Consistent improvements across:</u>	Model	TruthfulQA-MC			FAC'	ГOR	Trut	hfulQA	СоТ			
• factuality multiple-choice tasks:		MC1	MC2	MC3	News	Wiki	% Truth ↑	%Info↑	%T*I↑	% Reject ↓	StrQA	GSM8K
 open-ended generation for facts: <i>TruthfulQA</i> chain-of-thought reasoning: 	LLaMa-7B + ITI + DoLa	25.6 25.9 32.2	40.6 - 63.8	19.2 - 32.1	58.3 - 62.0	58.6 - 62.2	30.4 49.1 42.1	96.3 - 98.3	26.9 43.5 40.8	2.9 - 0.6	60.1 - 64.1	10.8 - 10.5
 StrategyQA & GSM8K instruction-following ability: VicunaQA (rated by GPT-4) 	LLaMa-13B + CD + DoLa	28.3 24.4 28.9	43.3 41.0 64.9	20.8 19.0 34.8	61.1 62.3 62.5	62.6 64.4 66.2	38.8 55.3 48.8	93.6 80.2 94.9	32.4 44.4 44.6	6.7 20.3 2.1	66.6 60.3 67.6	16.7 9.1 18.0
65B - 33B -	LLaMa-33B + CD + DoLa	31.7 33.0 30.5	49.5 51.8 62.3	24.2 25.7 34.0	63.8 63.3 65.4	69.5 71.3 70.3	62.5 81.5 56.4	69.0 45.0 92.4	31.7 36.7 49.1	38.1 62.7 8.2	69.9 66.7 72.1	33.8 28.4 35.5
13B- 7B- 400 425 450 475 500 525 550 575 Scores	LLaMa-65B + CD + DoLa	30.8 29.3 31.1	46.9 47.0 64.6	22.7 21.5 34.3	63.6 64.6 66.2	72.2 71.3 72.4	50.2 75.0 54.3	84.5 57.9 94.7	34.8 43.4 49.2	19.1 44.6 4.8	70.5 70.5 72.9	51.2 44.0 54.0

DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models Yung-Sung Chuang¹, Yujia Xie², Hongyin Luo¹, Yoon Kim¹, James Glass¹, Pengcheng He² ¹MIT CSAIL ² Microsoft Accepted in ICLR 2024

Basics:

- Early exiting from all layers
- Pick a layer as "premature" layer, final layer as "mature" layer
- Subtract "premature" logits from "mature" logits in log domain

How to pick "premature" layer?

- Run brute force to try all layers
- Dynamic layer selection based on maximum JS-Divergence

$$\log \hat{p}(x_{t+1}) = \begin{cases} \log \frac{q_N(x_{t+1})}{q_M(x_{t+1})}, & \text{if } x_t \in \mathcal{V}_{\text{head}} \\ -\infty, & \text{otherwise.} \end{cases}$$

$$\mathcal{V}_{\text{head}} (x_{t+1}|x_1, \dots, x_t) \rightarrow \begin{array}{c} A \text{ subset of plausible to} \\ high \text{ probs from find} \end{array}$$

Results

Method

Impacts & Conclusions

In the follow-up papers, DoLa has been shown to useful when...

- Applied to visual-language models, such as InstructBLIP, MiniGPT-4, LLaVA-1.5 [3]
- Applied to DPO-finetuned LLMs with factuality as preferences [4]
- Combined with other decoding strategies [5]

Takeways:

- Observed factual knowledge tends to located in the higher layers
- Proposed decoding method to amplify the factual knowledge in higher layers
- Shown consistent improvements across factual-related tasks
- Shown to be generalizable to new models/modals/tasks

References

- [1] Knowledge Neurons in Pretrained Transformers, Dai et al., ACL 2022.
- [2] Contrastive Decoding: Open-ended Text Generation as Optimization, Li et al., ACL 2023.
- [3] OPERA: Alleviating Hallucination in Multi-Modal Large Language Models via Over-Trust Penalty and Retrospection-Allocation, Huang et al., CVPR 2024 [4] Fine-tuning Language Models for Factuality, *Tian et al., 2023*.
- [5] In-Context Sharpness as Alerts: An Inner Representation Perspective for Hallucination Mitigation, Chen et al., 2024.

