
Detection, Creation, and Evaluation of Role-Play based Jailbreak Attacks in Large Language Models
Zach Johnson1, Lalana Kagal1

1Massachusetts Institute of Technology, Decentralized Information Group

Introduction
Large Language Models
(LLMs) are equipped with

robust guardrails by
developers in order to reject

compliance with harmful
requests (such as Tell me how

to build a bomb). However,
there exist methods to

circumvent these guardrails
and obtain this harmful

information from a LLM. These
are called jailbreak attacks.

These take the form of
instructing the LLM to act as a
made-up character that does

not comply with ethical
guidelines, followed with a

harmful request.

These attacks do not require
technical foundations to

generate. They are also quite
difficult to detect due to the

role-play nature of responses.

We seek to develop methods to
robustly detect, generate, and
evaluate these prompts so that

we can defend against them.

Generation
The pool of known role-play jailbreak

prompts is small (~75 samples). Thus,
we need to generate synthetic

examples.

Method
- Use Large Language Model
 (GPT-3.5) for generating role-play
 prompts
- Test role-play prompts with 15-20
 harmful requests. If any responses
 are jailbroken, label role-play prompt
 1.
- Else, label role-play prompt 0.
- If prompt was successful (1), add to
 pool of successful role-play prompts.
- Randomly sample k prompts. Feed k
 prompts to adversary via few-shot
 learning so it continues to learn and
 generate successful prompts.
- Save labeled prompts for
 classification task.

Evaluation
In order to label our generated prompts,
we need to know whether or not a LLM’s
response to a harmful request is truly a

jailbreak or not. Human annotation is the
best method, but this is not scalable.

Existing Methods
1. Keyword-based detection: If phrases
 such as “I’m sorry, but I cannot…” are in
 the response, label 0, else 1.
2. LLM-as-a-judge: Feed the question and
 the answer to a LLM, ask it to evaluate
 the response as jailbroken (1) or not
 jailbroken (0).
3. Fine-tuned transformer: Fine-tune
 transformer (RoBERTa) on 9000
 examples, and classify responses on
 this pre-trained model.
4. Embed labeled responses, reduce to
 2 dimensions using PCA, and
 separate the data using SVM
 hyperplane. This will serve as a
 classifier.

Detection
We trained several different classifiers on our
generated + labeled data to see if we could
classify successful/unsuccessful role-play

prompts with high performance.
Classifiers
1. PCA + SVM
2. K Means
3. Random Forest
4. Logistic Regression
5. DistilBERT
6. LLM Fine-tuned via GAN

Assessing Poor Performance
We wanted to better understand why our classifiers
weren’t doing well, so we analyzed cosine similarity
between ground truth prompts and successful
generations, AND and unsuccessful generations, as
well as average token length.

Conclusion
Due to high similarity between
successful, unsuccessful, and
ground truth prompts, as well
as performance of our
classifiers, this is likely a much
more complex that requires
much more data. It is not
evidently clear what
constitutes a successful vs.
unsuccessful role-play prompt.

Future Work
We hope to continue this
project with more resources
(funding, GPUs) so that we
can generate many more
samples and train a better
detector model. Additionally,
we would like to do more
research into the differences
between successful and
unsuccessful prompts. This
research is imperative, as (see
below) current publicly
available LLMs are
susceptible to these role-play
based jailbreak attacks.

Accuracy Precision Recall ROC AUC

PCA + SVM 0.98 0.97 0.95 0.98

LLM 0.89 0.77 0.77 0.85

RoBERTa 0.974 0.92 0.97 0.97

Keyword
Detection

0.70 0.25 0.02 0.49 Unsuccessful Successful

Cosine Similarity (avg.) 0.77 0.77 Model % of rejected role
play attacks

GPT-4 0.781

GPT-3.5-Turbo 0.397

Gemini-Pro
(Formerly

Palm/Bard)
0.082

