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Introduction
Large Language Models 
(LLMs) are equipped with 

robust guardrails by 
developers in order to reject 

compliance with harmful 
requests (such as Tell me how 

to build a bomb). However, 
there exist methods to 

circumvent these guardrails 
and obtain this harmful 

information from a LLM. These 
are called jailbreak attacks. 

These take the form of 
instructing the LLM to act as a 
made-up character that does 

not comply with ethical 
guidelines, followed with a 

harmful request. 

These attacks do not require 
technical foundations to 

generate. They are also quite 
difficult to detect due to the 

role-play nature of responses. 

We seek to develop methods to 
robustly detect, generate, and 
evaluate these prompts so that 

we can defend against them.

Generation
The pool of known role-play jailbreak 

prompts is small (~75 samples). Thus, 
we need to generate synthetic 

examples.

Method
-   Use Large Language Model 
    (GPT-3.5) for generating role-play 
    prompts 
-  Test role-play prompts with 15-20 
    harmful requests. If any responses 
    are jailbroken, label role-play prompt 
    1. 
-   Else, label role-play prompt 0.
-   If prompt was successful (1), add to 
    pool of successful role-play prompts. 
-   Randomly sample k prompts. Feed k 
    prompts to adversary via few-shot 
    learning so it continues to learn and 
    generate successful prompts.
-   Save labeled prompts for 
    classification task.

Evaluation
In order to label our generated prompts, 
we need to know whether or not a LLM’s 
response to a harmful request is truly a 

jailbreak or not. Human annotation is the 
best method, but this is not scalable.

Existing Methods
1.   Keyword-based detection: If phrases 
      such as “I’m sorry, but I cannot…” are in 
      the response, label 0, else 1.
2.   LLM-as-a-judge: Feed the question and 
      the answer to a LLM, ask it to evaluate 
      the response as jailbroken (1) or not 
      jailbroken (0).
3.   Fine-tuned transformer: Fine-tune 
      transformer (RoBERTa) on 9000 
      examples, and classify responses on 
      this pre-trained model.
4.   Embed labeled responses, reduce to 
      2 dimensions using PCA, and 
      separate the data using SVM 
      hyperplane. This will serve as a 
      classifier.

Detection
We trained several different classifiers on our 
generated + labeled data to see if we could 
classify successful/unsuccessful role-play 

prompts with high performance.
Classifiers
1.   PCA + SVM
2.   K Means
3.   Random Forest
4.   Logistic Regression
5.   DistilBERT
6.   LLM Fine-tuned via GAN

Assessing Poor Performance
We wanted to better understand why our classifiers 
weren’t doing well, so we analyzed cosine similarity 
between ground truth prompts and successful 
generations, AND and unsuccessful generations, as 
well as average token length.

Conclusion
Due to high similarity between 
successful, unsuccessful, and 
ground truth prompts, as well 
as performance of our 
classifiers, this is likely a much 
more complex that requires 
much more data. It is not 
evidently clear what 
constitutes a successful vs. 
unsuccessful role-play prompt.

Future Work
We hope to continue this 
project with more resources 
(funding, GPUs) so that we 
can generate many more 
samples and train a better 
detector model. Additionally, 
we would like to do more 
research into the differences 
between successful and 
unsuccessful prompts. This 
research is imperative, as (see 
below) current publicly 
available LLMs are 
susceptible to these role-play 
based jailbreak attacks.

Accuracy Precision Recall ROC AUC

PCA + SVM 0.98 0.97 0.95 0.98

LLM 0.89 0.77 0.77 0.85

RoBERTa 0.974 0.92 0.97 0.97

Keyword 
Detection

0.70 0.25 0.02 0.49 Unsuccessful Successful

Cosine Similarity (avg.) 0.77 0.77 Model % of rejected role 
play attacks

GPT-4 0.781

GPT-3.5-Turbo 0.397

Gemini-Pro 
(Formerly 

Palm/Bard)
0.082


