

30%

20%

10%

0%

P
e
rc

e
n
ta

g
e
 o

f
T
ile

s

0 20% 40% 60% 100%80%

Maximum Occupancy
100%

99th Percentile
Occupancy

34%

90th Percentile
Occupancy

6%

Percentage of buffer occupied

Tailors: Accelerating Sparse Tensor Algebra by
Overbooking Buffer Occupancy

Zi Yu (Fisher) Xue, Yannan Nellie Wu, Joel S. Emer, Vivienne Sze

Sparse Tensors are Large, Sparse
• Tensor computation relies on tiling to improve data reuse

and arithmetic intensity. Larger tiles maximize data

reuse.

• Operations on sparse tensors, particularly multiple sparse

operands, are especially challenging to tile effectively as

they have further reduced arithmetic intensity

Current Tiling Approaches Insufficient

1
%

.1 %.01 %10-2

%
10-3

%
10-4

%
10-5

%
10-6

%

Graph
Computing
cit-Patents

3.8M x
3.8M

Data
Analytics

DBLP

800K x
530K

Scientific
Simulations

pwtk

220K x
220K

Recommendation
Systems

Yahoo! Music

1M x 600K

Density
(log

scale)

???

×

Nonzeros Nonzeros

×

Empty

Uniform Occupancy Uniform Shape

• Same number of nonzeros
per tile

⟹ Ideal buffer utilization

• Varying coordinate range
in second sparse operand

⟹ Hard to tile second

operand

• All tiles must fit in buffer
⟹ Low buffer utilization

• Fixed coordinate ranges
⟹ Easy to tile both

operands

Opportunities for Overbooking

Tiles in Sparse Tensors Vary in Sparsity

We allocate buffer space to support most
tiles instead of all tiles to maximize buffer

utilization

Tailors: Tail Overbooked Buffers

Swiftiles: Tiling for Overbooking

Sampled
Predicted

Minimize preprocessing by sampling tile occupancy
distribution and scaling to buffer size

Overbooking
enables tile
size estimation
and do not
need the exact
tile size since
tiles which do
not fit entirely
in buffer are
still supported
by the
hardware

Distribution scalingRandom sampling
Larger tile size
makes buffer
more filled on

average

Occasionally, tile
occupancy will

bump data
(“overbook”)

Overbooking-based Coordinate-space Tiling

52.7x speedup over ExTensor without tensor occupancy
knowledge 2.3x speedup over ExTensor with perfect

tensor occupancy knowledge

----- DRAM -----
for m1 in [0,2):
 for k1 in [0,2):
 for n1 in [0,2):
----- buffer -----
 for m0 in [0,4):
 for k0 in [0,4):
 for n0 in [0,4):
 Z[m1*4+m0,n1*4+n0]
=A[m1*4+m0,k1*4+k0]
*B[k1*4+k0,n1*4+n0]

Example:

Larger M0 (larger A, Z
tiles)

⟹
𝑀0𝑛𝑒𝑤

𝑀0
 fewer loads

of B tiles

B DA

A

B

C

D

DRAM

Compute

Traversal order
A B C D A B …

When tile is overbooked, divide the buffer to stream data
through without losing data reuse

Hardware support is low cost and low complexity,
easy to integrate into existing accelerators

B DA

Streamed
Data

Reusable
Data

Fill Overwriting
Fill

Funded in part by the MIT AI Hardware program

Experimental Results
higher is better

As long as the cost of recovering from bumped data is
less than the benefit from larger tiles, overbooking is

beneficial

lower is better

Increase in DRAM traffic from streaming bumped
data is offset by reduced overall DRAM traffic from

larger tiles

	Slide 1

