Tailors: Accelerating Sparse Tensor Algebra by Overbooking Buffer Occupancy

Zi Yu (Fisher) Xue, Yannan Nellie Wu, Joel S. Emer, Vivienne Sze

Sparse Tensors are Large, Sparse

- Tensor computation relies on tiling to improve data reuse and arithmetic intensity. Larger tiles maximize data reuse.
- Operations on sparse tensors, particularly multiple sparse operands, are especially challenging to tile effectively as they have further reduced arithmetic intensity

Current Tiling Approaches Insufficient

Uniform Occupancy X

Nonzeros

• Same number of nonzeros per tile

???

- \Rightarrow Ideal buffer utilization
- Varying coordinate range in second sparse operand \Rightarrow Hard to tile second operand

Uniform Shape

- All tiles must fit in buffer \Rightarrow Low buffer utilization
- Fixed coordinate ranges
- \Rightarrow Easy to tile both operands

Funded in part by the MIT AI Hardware program