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Output Parsing:
Process to write PDDL actions and fill out PDDL domain file
1. Pull all action use cases from BRON
2. Pass use case description + predicates list to GPT-3.5
3. Extract action code
4. Parse code + extract predicates
5. Write action code to JSON

Test GPT-3.5's Retrieval Capabilities: 
Match cybersecurity use case description with technique definition
1. Embed cyber scenario retrieved from BRON
2. Calculate cosine similarity
3. Retrieve most similar techniques from BRON
4. Pass prompt into GPT-3.5
5. Collect GPT-3.5 's final answer

Goal: connect LLMs with cybersecurity database (BRON) to 
build guardrails to constrain the output using:
1. Generative power of LLMs
2. Facts + structure of the database

Goal: make this work 
easier and quicker

Use an LLM (large 
language model) to 

generate the PDDL files

Develop cybersecurity 
subject-matter expertise 

for accuracy

Motivation:
Current method of testing cybersecurity networks: create PDDL 
(planning domain definition language) files by hand

Retrieval Capabilities: There are three main categories of response: GPT-3.5 returned correct use 
case, GPT-3.5 was provided correct answer but did not choose it, and GPT-3.5 was not provided 
the correct answer.

Retrieval Capabilities:
• Integrate subject matter expertise into generated PDDL files

Output Parsing:
• Increase complexity of generated PDDL file
• Move from benchmark testing to cybersecurity domain

In general, the cosine similarity was higher between use case and selected answer when the 
answer was correct as opposed to when the answer was incorrect.

Provided that the correct answer was one of the options given to GPT-3.5, it returned 
that correct answer 77.8% of the time.
• Promising prospects for retrieval capabilities
• Can match cybersecurity subject-matter expert

:action

:parameters

:precondition

:effect

:pos_effects

:neg_effects

:pos_preconditions

:neg_preconditions

Output Parsing:
• Can parse a PDDL action 

into its parameters, 
preconditions, and 
effects

• Figure on right displays 
the action parts

• Iteratively reconstruct 
domain file predicates 
and types from actions
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