
• The textual format of logs is unsuitable for 
automated analysis.

• Step 1A: Log Parsing
• Determine log template and parsed 

variables for each line.
• Create the parsed table.
• Off-the-shelf algorithms for this part [3].

• Step 1B: Parsed Variable Tagging
• Assign human-understandable tag to 

each variable.
• Leverage preceding log template tokens 

and GPT-3.5-Turbo/GPT-4 [4-5].

Sawmill: Extracting Data for Causal Diagnosis of Large Systems

Challenge C: Obtaining a Causal Graph
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Finding Failure Causes from Logs is Hard!

• In large distributed systems, failures are 
common [1], and they must be resolved from 
observational data like system logs.

• Operations teams’ goal is to most efficiently 
fix the problem, which requires finding the 
strongest cause of a failure.

• Ideal setting to apply causal reasoning and 
calculate Average Treatment Effects (ATEs).

• However, we must bridge the available data 
and the requirements of causal reasoning 
using Pearl’s model [2]:
• Challenge A: Deriving the Schema

How can we derive a tabular, human-
understandable dataset from log?

•  Challenge B: Distilling the Data
How can we distill useful features out of 
the log-derived tabular dataset?  

• Challenge C: Obtaining a Causal Model
How can we efficiently construct a 
causal model over the distilled features?

Challenge A: Turning Logs into Understandable Tables

Challenge B: Summarizing Tables Usefully

• Log information is often too granular for the 
desired level of reasoning.

• Step 2A:  Defining Causal Units
• User can specify granularity of analysis – 

e.g. per user, per region or per machine.
• Step 2B: Prepared Variable Computation

• The information in the parsed table is 
aggregated for each causal unit.

• Appropriate aggregates are selected 
based on the variable type.

• Step 2C:  Prepared Variable Selection
• Only keep one aggregated prepared 

variable per parsed variable.
• Maximize potential downstream 

usefulness by picking the variable that 
maximizes empirical entropy. 

• Causal analysis requires a model of variable 
interactions expressed as a causal graph.

• Difficult to obtain over log variables:
• Hand crafting it is daunting based on the 

large number of variables.
• Inferring it automatically using causal 

discovery is not reliably fast/correct 
enough because of variable 
dependencies [5-13].

• We instead propose Exploration-based 
Causal Discovery:
• User gives a variable of interest.
• Sawmill suggests candidate causes for it, 

based on the data in the prepared table.
• User uses domain expertise to add real 

causes to the causal graph.
• Repeat to increase exploration score.

Evaluation

• We compared Sawmill against two baselines:
• A simple Regression-based approach that does not leverage causality.
• An approach relying on GPT-4 [5] to suggest candidate causes.

• We used three log datasets representing different tradeoffs between realism 
and ground-truth effect certainty:

• A dataset derived from real executions of TPC-DS on PostgreSQL with 
different parameter settings.

• A real log dataset from an HTTP-based client-server application, with an 
injected causal relationship of varying magnitude and noisiness.

• A synthetic log dataset with a varying number of variables and noisiness.
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Accuracy: Sawmill’s mean MRR 
is 41.89% higher than that of 
the next best baseline 
(Regression), while Sawmill’s 
mean ATE Error is 10.99% lower 
than that of the next best 
baseline (Regression).

Computational Efficiency: Sawmill only 
requires an average of 346.92 s to go from 
a log to an ATE, 75.03% of which is required 
for log parsing. Sawmill’s performance 
scales linearly with log complexity.

Human Efficiency: Sawmill only requires 
6-10 user interactions to leverage 
causality, up to 5 more than the best 
baseline, Regression.
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