Sawmill: Extracting Data for Causal Diagnosis of Large Systems

Finding Failure Causes from Logs is Hard!

- In large distributed systems, failures are *common* [1], and they must be resolved from observational data like system logs.
- Operations teams' goal is to *most efficiently fix the problem*, which requires finding the strongest cause of a failure.
- Ideal setting to apply *causal reasoning* and calculate Average Treatment Effects (ATEs).
- However, we must bridge the *available data* and the *requirements of causal reasoning* using Pearl's model [2]:
- Challenge A: Deriving the Schema How can we derive a tabular, humanunderstandable dataset from log?
- Challenge B: Distilling the Data the log-derived tabular dataset?
- Challenge C: Obtaining a Causal Model causal model over the distilled features?

Challenge A: Turning Logs into Understandable Tables

- The textual format of logs is *unsuitable* for
- Step 1A: *Log Parsing*
- Determine *log template* and *parsed variables* for each line.
- Create the *parsed table*.
- Step 1B: *Parsed Variable Tagging*
- Assign *human-understandable tag* to each variable.
- Leverage preceding log template tokens and GPT-3.5-Turbo/GPT-4 [4-5].

Challenge B: Summarizing Tables Usefully

- Log information is often *too granular* for the
- Step 2A: *Defining Causal Units*
- User can specify granularity of analysis –
- Step 2B: Prepared Variable Computation
 - The information in the parsed table is aggregated for each causal unit.
 - Appropriate aggregates are selected based on the *variable type.*
- Step 2C: *Prepared Variable Selection*
- Only keep *one* aggregated prepared variable per parsed variable.
- usefulness by picking the variable that maximizes empirical entropy.

Challenge C: Obtaining a Causal Graph

- Causal analysis requires a model of variable interactions expressed as a *causal graph*.
- Difficult to obtain over log variables:
 - large number of variables.
 - discovery is *not reliably fast/correct* enough because of variable dependencies [5-13].
- We instead propose *Exploration-based* Causal Discovery:
 - User gives a *variable of interest.*
 - Sawmill suggests *candidate causes* for it, based on the data in the prepared table.
 - User uses *domain expertise* to add real causes to the causal graph.
 - Repeat to increase *exploration score*.

Markos Markakis¹, Brit Youngmann², Trinity Gao¹, Ziyu Zhang¹, Rana Shahout³, Peter Baile Chen¹, Chunwei Liu¹, Ibrahim Sabek⁴, Michael Cafarella¹

¹MIT, ²Technion, ³Harvard University, ⁴University of Southern California

Evaluation

- We compared Sawmill against two baselines:
- A simple *Regression*-based approach that does not leverage causality.
- An approach relying on *GPT-4* [5] to suggest candidate causes. • We used three log datasets representing *different tradeoffs between realism*
- and ground-truth effect certainty:
- A dataset derived from *real executions of TPC-DS on PostgreSQL* with
- A *real log dataset* from an HTTP-based client-server application, with an *injected causal relationship* of varying magnitude and noisiness.
- A *synthetic log dataset* with a varying number of variables and noisiness.

Accuracy: Sawmill's mean MRR is **41.89%** higher than that of mean ATE Error is **10.99%** lower baseline (Regression).

Dataset			Sawmill MRR	Regression MRR	AskGPT MRR	
PostgreSQL			0.5667	0.0476	0.4815	Dataset
Proprietary	F=0.5 - $F=0.1$ - $F=0.01$	$\begin{array}{c} p_{f} = 1.0 \\ p_{f} = 0.5 \\ p_{f} = 0.2 \\ p_{f} = 1.0 \\ p_{f} = 0.5 \\ p_{f} = 0.2 \\ p_{f} = 1.0 \end{array}$	$ \begin{array}{r} 1.0000\\ 1.0000\\ -1.0000\\ 1.0000\\ 1.0000\\ -1.0000\\ -1.0000\\ \end{array} $	$ \begin{array}{r} 1.0000 \\ 1.0000 \\ - \frac{1.0000}{1.0000} - \frac{1.0000}{1.0000} \\ - \frac{1.0000}{1.0000} - \frac{1.0000}{1.0000} - \end{array} $	$\begin{array}{c} 0.0000\\ 0.3333\\ \hline 1.0000\\ \hline 0.0\overline{0}000\\ \hline 0.0000\\ \hline 0.0000\\ \hline 0.0\overline{7}14 \end{array} -$	PROPRIETARY $F=0.5$ p p $\overline{F}=\overline{0.1}$ $ p$ \overline{P} $\overline{F}=\overline{0.01}$ $ p$ \overline{P}
XYZ	V=10	$p_{f}=0.5$ $p_{f}=0.2$ R=1 R=5	1.0000 1.0000 0.6667 0.6111	0.0667 0.0667 0.6667 0.5556	0.0000 0.0000 0.4007 0.6667	XYZ V=10 R R
	- V=100	$-\frac{R=10}{\overline{R}=1} - \frac{R=10}{R=5}$	0.6667 0.6667 0.6667 0.3889	0.5833 0.5476 0.5370 0.6667	$-\begin{array}{c} 0.0664\\ \hline 0.5000\\ 0.0000\\ 0.5000\end{array}$	$ \overline{V} = \overline{100} - \frac{R}{R} $ $ \overline{V} = \overline{1000} - \frac{R}{R} $
	- V =1000	$-\frac{1}{R=1}$ $-\frac{10}{R=5}$ $-\frac{10}{R=10}$	0.6667 0.6667 0.6667 0.6667	0.0000	0.1667 0.1667 0.1667	R R Mean % Error on PROPRIET Mean % Error on XXZ
Mean on PROPRIETARY Mean on XYZ			1.0000 0.6296	0.7926 0.3952	0.1561 0.3667	Mean % Error
Mean			0.8018	0.5651	0.2730	

Dataset			PARSE (s)	Prepare (s)	EXPLORECANDI- DATECAUSES (S)	Total Time (s)	Total Time over Log Size (s/MiB)	
PostgreSQL			37.65	4.41	4.85	46.91	2.39	
PROPRIETARY	F=0.5	$p_{f}=1.0$	189.19	48.58	2.62	240.39	1.06	
		$p_{f} = 0.5$	189.51	48.83	3.20	241.54	1.07	
		$p_{f} = 0.2$	195.58	49.32	3.18	248.08	1.10	
	$\overline{F}=0.1$	$p_{f}=1.0$	194.50	49.11	3.22	246.83	1.09	
		$p_{f} = 0.5$	189.53	49.18	3.24	241.95	1.07	
		$p_{f} = 0.2$	189.58	49.50	3.28	242.36	1.07	
-	$\overline{F}=0.01$	$p_{f} = 1.0$	190.70	49.99	3.31	244.00	1.08	
		$p_{f} = 0.5$	187.09	49.47	3.38	239.94	1.06	
		$p_{f} = 0.2$	191.18	49.30	3.43	243.91	1.08	
XYZ	V=10	R=1	72.33	4.26	2.40	78.99	1.32	
		R=5	80.04	5.27	2.98	88.29	1.48	
		R=10	79.69	4.70	3.09	87.48	1.47	
	$\overline{V}=100$	R=1 -	145.67	33.24	3.59	182.50	2.95	
		R=5	144.14	33.87	3.87	181.88	2.94	
		R=10	144.67	33.79	3.97	182.43	2.95	
-	$\overline{V} = \overline{1000}$	$\overline{R}=1$	853.14	326.83	8.38	1188.35	18.90	
		R=5	822.43	334.47	8.91	1165.81	18.54	
		R=10	849.08	335.59	15.09	1199.76	19.08	
Mean			260.30	82.09	4.53	346.92	4.30	
Breakdown (%	3		75.03%	23.66%	1.30%			

Computational Efficiency: Sawmill only

requires an average of **346.92 s** to go from a log to an ATE, **75.03%** of which is required scales linearly with log complexity.

Human Efficiency: Sawmill only requires 6-10 user interactions to leverage

Dataset	System	Parse	Separate	SETCAUSALUNIT	Prepare	EXPLORE CANDIDATECAUSES	Accept	GETATE	Regress	GPT-EXPLORE CANDIDATECAUSES	Total
PostgreSQL	Sawmill	1	1	1	1	2	3	1	0	0	10
	Regression	1	1	1	1	0	0	0	1	0	5
	AskGPT	1	1	1	1	0	3	1	0	2	10
PROPRIETARY	Sawmill	1	0	1	1	1	1	1	0	0	6
	Regression	1	0	1	1	0	0	0	1	0	4
	AskGPT	1	0	1	1	0	1	1	0	1	6
XYZ	Sawmill	1	0	1	1	2	3	1	0	0	9
	Regression	1	0	1	1	0	0	0	1	0	4
	AskGPT	1	0	1	1	0	3	1	0	2	9

References

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		True	Sawmill	Regression	AskGPT
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ATE	ATE	ATE	ATE
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	=1.0	258.43	257.47	273.01	0.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	=0.5	114.86	112.66	118.04	112.66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=0.2	28.71	27.28	25.94	27.28
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	=1.0	258.43	258.64	256.01	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	=0.5	114.86	121.45	119.38	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=0.2	28.71	33.98	35.30	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	=1.0	258.43	258.57	264.50	258.57
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	=0.5	114.86	85.66	84.79	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=0.2	28.71	42.64	45.18	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2.00	2.00	2.00	2.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	2.00	2.11	2.10	2.11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	2.00	1.97	1.98	1.97
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 -	2.00	1.96	1.95	2.36
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	2.00	1.60	1.58	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	2.00	0.87	0.86	0.97
5 2.00 0.62 -1.61 0.62 10 2.00 0.12 0.35 0.00 RY 11.72% 14.64% 67.44% 28.83% 47.88% 49.50% 20.27% 31.26% 58.47%	1 -	2.00	1.78	0.37	0.00
10 2.00 0.12 0.35 0.00 RY 11.72% 14.64% 67.44% 28.83% 47.88% 49.50% 20.27% 31.26% 58.47%	5	2.00	0.62	-1.61	0.62
IRY 11.72% 14.64% 67.44% 28.83% 47.88% 49.50% 20.27% 31.26% 58.47%	10	2.00	0.12	0.35	0.00
28.83% 47.88% 49.50% 20.27% 31.26% 58.47%	RY		11.72%	14.64%	67.44%
20.27% 31.26% 58.47%			28.83%	47.88%	49.50%
			20.27%	31.26%	58.47%