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Motivation Method Results
Assembly is the core of modern industrial manufacturing! 1. Assembly-by-disassembly 2. Disassembly tree search 99.8% success rate for collision-free path planning on a dataset of 8,000+ two-part assemblies.
Assurping all parts are rigid, a bijeFtion exists between the assembly We formulate the disass?mbly sequence plannir}g as a tree search Y N R Mothod —— Rotational
and disassembly sequences, meaning an assembly sequence canbe  framework where established tree-search techniques can be applied e ‘j’ 8y %g AL 7 fL ‘? Overall | Screw Puzzle Others Overall
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] o Lo P ﬂ ﬁ j ~30% success rate improvement over baselines for physically feasible sequence planning on a
P 3 Disassembly Sequence Planning [ — dataset of 240 complex multi-part assemblies.
However, the assembly process is planned by human, which is 1 - D SAICCCEILLLLLE L PR P LR P PRREEELEE R EEERES — e | | £ -
tedious and time-consuming. Human needs to send hardcoded S i —~ o e Method , Gsr‘:;;z: R:tecgg}gr‘;w 3‘2?;;)(3“ , é‘r‘i';;e::sRa;"G(:;;ﬁ‘Sgh f‘é‘:ﬁ:ﬁrs
instructions to robots, and they only work for a specific assembly. - 1 "H ' #_} - " ﬂ 'E j Random e 292 250 co5 625 5125
i 1 e - E ) o Heuristics 50.42 60.83 69.17 66.67 75.00 82.08
Labor-intensive Hardcoded ™ oo e / I urs Learning (from Sim) 54.17 62.50 69.58 67.50 76.25 82.08
_ planning instructions | Reverse Sequence P T — FEASIBLE Learning (from Human) |  30.83 36.67 42.92 65.00 74.58 79.17
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1 - _— ) 3. Learning-based part selection Each path of the tree represents a particular way of how the assembly is Physically feasible sequences with a stability guarantee by leveraging the flat holding surface, a few
- ‘ We introduce a supervised learning approach to predict the disassembled from top to bottom (or assembled from bottom to top). supporting grippers, and proper reorientations, which is applicable to a real-world assembly setup.
----------------------------------- disassembly sequence order on complex contact-rich 3D assemblies
using a GNN. Gathering training labels is made possible by our 4. Physics-based path planning ) )
So, can we automate assembly planning for arbitrary assemblies? interactive data labeling tool for human-authored labels and a By applying forces/torques to assembly parts, we are able to infer the W ol % jk:
. realistic physics-based simulation for synthetic labels. The network . J;rect disassembly motion direction after the induced movement of vJ v_/ <
Challenges: trained on a large dataset with diverse assemblies provides effective 1},0 part is observed.
e The geometry of objects can be arbitrarily complex. It’s non-trivial neural guidance to sequence planning on unseen assemblies.
to plan collision-free paths for assembly. _
e The number of potential assembly sequences scales exponentially [~ ASSEMBLY GRAPH I Jpotion diretion M 9
with the number of parts, and most of the sequences are infeasible. [ f «™h — . — ;
e How to make sure the assembly process is gravitationally stable and LA | | L
executable by only a few robotic grippers? \L J Force direction F
7 We propose a physics-based planner that efficiently plans the
- ~ PN disassembly motion by leveraging feedback from physics. We formulate é
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PART POINT CLOUD  — starts from the assembled state and searches for a sequence of actions
! e 1 e - _ B . until a disassembled state has been found or some time/depth
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. e o 5. Quasistatic stable pose generation
¢ An efficient assembly sequence planning algorithm that leverages Since there is an infinite number of poses in a 3D space for a given
an assembly-by-disassembly strategy and a physics-based assembly, to reduce the search space, we leverage a quasistatic pose -
simulation to generate physically-feasible sequences for complex- estimator to provide a good set of candidate poses which have a
shaped contact-rich assemblies. higher chance to be dynamically stable during assembly.

¢ A novel physics-based planning method for translational and 6. Physics-based stability check

rotational assembly motion for arbitrary-shaped assemblies. ‘ g Finally, given the assembly and the part to disassemble with a candidate
o Alarge-scale dataset and benchmark for assembly planning <> i £ i h | pose, we apply our custom-designed physics-based simulation for
including thousands of physically valid assemblies. N  ~ % ' accurate gravitational stability check during the assembly process. The
~ stability check result updates the disassembly tree with an either
feasible or infeasible edge.
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o A state-of-the-art success rate, computational efficiency, and prob = 326%  prob=-326%  prob-19.8%  prob=51%  prob = 3.7%
generalization performance.
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