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From sparse descriptions of events, observers can
make systematic and nuanced predictions of what
emotions the people involved will experience. We
propose a formal model of emotion prediction
in the context of a public high-stakes social
dilemma. This model uses inverse planning to
infer a person’s beliefs and preferences, including
social preferences for equity and for maintaining a
good reputation. The model then combines these
inferred mental contents with the event to compute
‘appraisals’: whether the situation conformed to
the expectations and fulfilled the preferences. We
learn functions mapping computed appraisals
to emotion labels, allowing the model to match
human observers’ quantitative predictions of 20
emotions, including joy, relief, guilt and envy.
Model comparison indicates that inferred monetary
preferences are not sufficient to explain observers’
emotion predictions; inferred social preferences are
factored into predictions for nearly every emotion.
Human observers and the model both use minimal
individualizing information to adjust predictions of
how different people will respond to the same event.
Thus, our framework integrates inverse planning,

2023 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 J

un
e 

20
23

 

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2022.0047&domain=pdf&date_stamp=2023-06-05
https://doi.org/10.1098/rsta/381/2251
mailto:daeda@mit.edu
https://doi.org/10.6084/m9.figshare.c.6631138
https://doi.org/10.6084/m9.figshare.c.6631138
http://orcid.org/0000-0001-5003-9278
http://orcid.org/0000-0002-1925-2035
http://orcid.org/0000-0003-2377-1791
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220047

...............................................................

event appraisals and emotion concepts in a single computational model to reverse-engineer
people’s intuitive theory of emotions.

This article is part of a discussion meeting issue ‘Cognitive artificial intelligence’.

1. Introduction
Human social life depends on our ability to understand and anticipate other people’s emotions.
Intense efforts in both basic science and industrial applications are currently directed towards
building models of emotion recognition: identifying a person’s emotions from their expression.
Here we tackle a complementary challenge: predicting how a person will emotionally react to an
event.

To illustrate the phenomenon we target, imagine watching an episode of the popular British
gameshow called ‘Golden Balls’ [1]. During the episode, two players, Arthur and Bella, play a
public one-shot social game called ‘Split or Steal’. On the table is a pot of $100 000 USD. Eventually,
each player will secretly choose to Split (Cooperate) or Steal (Defect). If both players choose to
Split, each takes home $50k. If both choose to Steal, they both leave with nothing. But if one
chooses to Split and the other chooses to Steal, the one who stole takes the entire $100k and the
other player leaves with nothing.1 Before Arthur and Belle make their choices, the gameshow
host gives them a chance to talk to each other (in front of the live studio audience and TV viewers
at home). They both vehemently promise to choose Split. Then they each make their secret choice.
The choices are revealed simultaneously—they both chose Split! What do you predict Arthur will
feel in this moment? Even without seeing their expressions, human observers generate systematic
predictions about others’ emotional reactions to events [3–5]. For example, observers predict
Arthur will feel joy, relief and gratitude. By contrast, if he Split but Bella Stole, Arthur is predicted
to feel disappointment, envy and contempt.

The question for the current research is: How do human observers generate these emotion
predictions? Social games offer a highly constrained but emotionally evocative context for
studying social cognition. The ‘Split or Steal’ game can be fully described by a simple set of
variables but evokes diverse and fine-grained predictions of players’ emotions. We develop a
Bayesian framework [6,7] to formalize the conceptual knowledge, and the cognitive reasoning,
that observers use to predict others’ emotional reactions to events [8]. We aim to capture how
observers generate abstract representations of others’ minds from situational cues, tailor their
emotion predictions to a specific individual, and predict distinctively social emotions like guilt,
embarrassment and respect.

Our model is organized around a psychological premise: observers predict Arthur’s emotional
reaction by reasoning about how he will evaluate the situation relative to his desires and beliefs
[8–14]. Accordingly, the overall model of emotion prediction (figure 1) comprises three Modules,
which simulate how observers (1) infer Arthur’s preferences and beliefs, (2) reason about how
Arthur will evaluate (or ‘appraise’) events with respect to his mental contents (e.g. Was the event
something he expected and wanted to happen?), and (3) predict Arthur’s emotions based on
his likely appraisals. Module (1) uses inverse planning to model how observers reason over an
intuitive Theory of Mind (wherein a player chooses actions that maximize a subjective utility
function) to infer a player’s mental states [15–17]. Module (2) computes appraisals by reasoning
about how a player will evaluate an event based on his inferred mental contents. Module
(3) translates the computed appraisals into predictions of the player’s emotions using learned
emotion concepts (i.e. functions that express emotions in terms of appraisals).

1This payoff structure is similar to a one-shot Prisoner’s Dilemma (PD): the payoffs are symmetrical for the players, the
players make their decisions without knowledge of the other player’s choice, and it is never in either player’s financial
interest to cooperate. However, because both being defected on (CD) and mutual defection (DD) confer the same payoff ($0),
this game has been referred to as a ‘weak’ PD [2].
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Figure 1. Emotion prediction as inference over an intuitive Theory of Mind. Hypotheses about how human observers reason
about others’ emotions canbe formalized as probabilistic generativemodels. This reflects a hypothesis about observers’ intuitive
theory of other people’s minds, not a scientific hypothesis about people’s actual emotions. (a) Implementation of the general
hypothesis for the ‘Split or Steal’ game (a public one-shot Prisoner’s Dilemma). We treat observers’ emotion predictions as a
function of their intuitive reasoning about how players will subjectively evaluate, or ‘appraise’, the game’s outcome. Observers
predict a player’s emotions by inferring what preferences and beliefs motivated the player’s decision toCooperate orDefect,
and reason about how those preferences and beliefs would cause the player to emotionally react to the outcome of the game.
The intuitive theories we test take the form of directed acyclic graphs, where arrows indicate the causal relationship between
variables. Shaded nodes are observable variables and open nodes are latent variables. Round nodes are continuous variables,
rectangular nodes are discrete variables. Nodes with a single border are random variables. The double border indicates that
appraisals are calculated deterministically. Plans are shown with a partial border because they are not explicitly represented
in this model. (b) Computational model of the intuitive theory. The model comprises three modules. Module (1) infers a joint
distribution over preferences and beliefs given a player’s action via inverse planning. Module (2) computes appraisals based on
howaplayerwould evaluate the outcomeof the gamewith respect to the inferred preferences and beliefs.Module (3) generates
emotionpredictions by transforming the computedappraisals. Theprobability density plots illustrate howobservers’ prior belief
about a player’s preference P(ω) is updated based on the player’s action, and how the inferred preference P(ω | a1) is used to
predict the player’s emotional reaction to the game’s outcome P(e | a1, a2).

This work aims to computationally recapitulate how human observers predict others’
emotional reactions. To fit and test the model, we collect high-resolution behavioural data on the
‘Split or Steal’ game. Observers on Amazon mTurk made systematic predictions of 20 nuanced
emotions and 20 individual players. Combining the modules, we quantitatively simulate how
human observers predict players’ fine-grained emotional reactions to hypothetical events.

2. Relation to prior work
To predict what emotions Arthur will experience when he splits the pot with Belle, observers
reason about what the situation means to Arthur. We build a model that generates emotion
predictions from a description of the events (i.e. the same information given to observers).
There are many approaches to building situation-computable models of emotion prediction
[18], including behavioural economic decision models [19,20], rule-based emotion schemas
[21,22], multi-agent computer simulations [12,23,24] and large language models [25,26]. These
methodologically and philosophically diverse approaches share a view that emotion prediction
depends on abstracting Theory of Mind representations from contextual information about a
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situation. However, these approaches vary widely in how the models abstract, represent and
reason over Theory of Mind information.

Our work foregrounds this critical process, treating the prediction of emotional reactions to
events as cognitive reasoning based on the inference of preferences and beliefs. We frame human
emotion understanding as inference over an intuitive theory of other minds. An intuitive theory is
a logically and causally structured mental model (a ‘lay’ ontology) [27–29], which is typically not
explicit or fully introspectable [30]. This work studies an aspect of the intuitive theory of emotion:
observers’ mental model of people’s emotional reactions to events. Note that the aim of this work
is to build a formal scientific model of people’s intuitive theory of emotion, not to test whether the
intuitive theory is accurate. That is, although people are able to sensitively infer and accurately
predict others’ emotions in some contexts [31–33], people make systematic errors in other contexts
[3,34,35]. Because we are interested in capturing and characterizing people’s intuitive theory of
emotion, we do not here attempt to test the ground truth accuracy of either the observers’ or the
model’s predictions, only their similarity to each other.

(a) Inverse planning
How do human observers infer a specific person’s preferences and beliefs? One source of
information is the person’s actions. People typically choose intentional actions that are likely
to achieve their goals or maximize their rewards, given their values and beliefs (the principle
of rational action). As a result, even a single sparse observation (e.g. observing one action) can
lead observers to update estimates of the person’s mental states [36,37]. Observers’ intuitive
reasoning about others’ actions can be framed as a theory-based Bayesian model [6,7], which
formalizes how causal structure and prior beliefs constrain inference of latent mental contents
[16]. In models of ‘inverse planning’, a forward planning model simulates how approximately
rational agents, imbued with rich cognitive structure, perceive, plan and act in a dynamic world.
Bayesian inversion of the forward model then supports inverse inference of what unobserved
mental contents were likely to have caused the observed behaviour. Inverse planning models
can closely match how observers use others’ behaviour to infer mental contents, such as beliefs,
preferences, rewards, costs, habits and intelligence [15,17,38–41].

Inverse planning has been extensively applied in the domain of action understanding [42–44].
Adapting inverse planning to predict nuanced social emotions imposes demands on the latent
representations and computations beyond what are typically required for action understanding.
Predicting emotions like envy, guilt, respect and gratitude requires representing multifaceted
preferences and recursive beliefs about rewards, costs, interpersonal relationships and reputation.
Predicting emotions like surprise, disappointment, regret and relief requires computing prediction
errors and counterfactuals.

While there are numerous approaches to modelling Theory of Mind [45,46], our work makes
a principled commitment to inverse planning [8]. Module (1) instantiates an inverse planning
model that infers rich abstract Theory of Mind representations. The forward model formalizes our
hypotheses about observers’ conceptual knowledge of others’ intentional actions. For instance,
observers know that people’s choices reflect values beyond their own monetary gain, such as
equity and achieving a desirable reputation [36,47,48]. We hypothesize that observers infer these
values to predict social emotions. To capture emotion predictions that depend on social values, we
incorporate weighted utility terms like equity and reputation into the model. We empirically test
these hypotheses by comparing observers’ attributions of players motivations against the model’s
inference, and subsequently use the inferred weights to capture observers’ predictions of nuanced
social emotions.

(b) Inferring appraisals
Module (2) extends the inverse planning framework, using the inferred preferences and beliefs
to simulate observers’ latent reasoning about how a player will evaluate a new world state

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 J

un
e 

20
23

 



5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220047

...............................................................

(the outcome of the game). The idea that emotional experience is a consequence of how people
evaluate events with respect to their desires and beliefs is a central principle of Appraisal Theory
[49–51]. Appraisal Theories describe first-person emotional experience as an interaction between
a person and an event, with respect to appraisal variables such as goal congruence (Did she get what
she wanted?), agency (Who caused the event, and with what intention?), controllability (Could
she influence the situation?) and probability (How likely was the outcome?) [52,53].

Many researchers have proposed that observers reason about others’ emotions using a mental
model of appraisal-like processes [4,8,10,12,54–58]. An influential theory is that people engage in a
process of ‘reverse appraisal’ to infer the desires and beliefs of others by observing their emotional
reactions to events [11,59,60]. Reverse appraisal emphasizes inverse inference: that is, reasoning
about the appraisals that caused someone’s emotions and expressions [13,59]. Empirical work
supports the idea that people infer appraisals from expressions [61] and, based on the inferred
appraisals, update their understanding of others’ motivations [11,62] and personality traits [60].

Our work follows in the spirit of this theoretical framework, but with important differences
in how we implement the overarching idea. Module (2) uses mental state representations
inferred via inverse planning to generate probabilistic representations that reflect observers’ latent
reasoning about how a target will appraise a situation. We refer to these latent representations as
computed appraisals. Whereas reverse appraisals reflect an inverse inference (appraisals are inferred
from their effects), computed appraisals reflect a forward inference (appraisals are computed from
their causes). A related approach is seen in multi-agent partially observable Markov decision
processes (POMDPs), where simulated agents compute appraisals based on their action planning
policies and belief updates, and can infer appraisals of other agents by representing models of
their states [12,23,24]. At present, these computer simulations have not been tested against human
judgements.

Another related line of work has computationally modelled human observers’ emotion
understanding as a Bayesian intuitive theory [3,4,55,63,64], see [13] for review. This line of
research has not yet incorporated inverse planning. For example, Ong et al. [4] studied how
observers predict others’ emotional reactions to a lottery. Observers’ predictions of eight emotions
were well captured by a model based on three deterministically computed appraisal variables:
the amount won, the reward prediction error and the absolute value of the reward prediction
error. While groundbreaking, this prior model has a limited representational space. Players in
a lottery make no decisions and have no social interactions, and the model predicts the same
emotion for every player who received the same outcome. In another example, Wu et al. [55]
used an inverse planning model to study how observers infer preferences and beliefs based on a
person’s emotional reaction to events (e.g. if a person smiles at the outcome, she wanted it; if she
opens her eye wide, she did not expect it), but not how observers predict emotions from inferred
preferences and beliefs. In our framework, we therefore formalize the computation of appraisals
using the machinery of inverse planning to reason over a Bayesian intuitive theory of emotion,
combining key components of prior work.

(c) Modelling emotion understanding
In our proposed framework, computed appraisals act as a latent mental grammar of emotion
understanding, and emotion concepts reflect computations in this latent space [65]. Module
(3) translates computed appraisals into emotion predictions by applying ‘emotion concept’
functions that define emotions in terms of computed appraisals. There are many possible ways to
accomplish this step (essentially, writing a dictionary of emotion labels). It might be possible to
constrain these definitions manually, by consulting formal and intuitive theories of the meanings
of emotion labels [20,66–73]. In the present work, we preferred to learn the transformation from
computed appraisals to emotions. Thus, our strategy can be situated within two tensions among
modelling approaches.

The first tension relates to how reliant models are on humans. Computer science research
tends to emphasize stimulus-computability, building and training models that operate over
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stimuli directly. Psychology research tends to emphasize the testing of psychological hypotheses,
using human observers to abstract mental state representations from stimuli. The second tension
relates to how model structure is acquired. Theory-driven approaches define representations and
computations upfront. Data-driven approaches learn these from training data.

Some computer science work favours building highly structured causal models with cognitive
latent spaces. This approach forgoes learning transformations between latent variables and
emotions, opting to hand-code computations for appraisal variables that are prescribed by
Appraisal Theories [12,23,24], see [18,74] for reviews. Appraisal variables are then translated into
emotions according to prescribed definitions [22,75–77]. Other computer science work favours
training less-structured models. This approach forgoes extensive hand-coding, opting to learn
latent representations from statistical regularities in large datasets [78–80], see [81–83] for reviews.
These learned latent representations can encode patterns mapping between emotion labels and
expressions, scenes, objects, actions and social interactions [84–88].

Psychology research has aimed to build and test first- and third-person appraisal theories
by modelling the relationships between empirical ratings of appraisals and of emotions. This
approach relies on human observers to generate representations of stimuli. Observers judge
someone’s appraisals and emotions based on information about the situation or the person’s
expression, and emotion concept functions are fit or tested on these data [11,54,61]. Given
manually annotated appraisal variables, simple classifiers can match human labels for many
emotional events [54]. For example, a classifier given human ratings of 25 appraisal variables
picked the self-reported emotion label (from 14 choices) for 51% of 6000 real-life events [68].

Our present work takes a middle path between these various approaches. We build a highly
structured causal model based on theoretical constraints and psychological insights into social
decision making, appraisal computations and emotion understanding. However, we implement
general cognitive principals from Appraisal Theories, behavioural economics and computational
cognitive science, rather than predefined representations of appraisal variables and emotion
concepts. Primitive appraisal computations (achieved utility, prediction error, counterfactual
reasoning) are applied over abstract Theory of Mind representations (preferences and beliefs),
which are inferred from the event by inverting a causally structured generative model. The
latent space of computed appraisals is then used to learn the conceptual structure of emotion
predictions. Thus, we leverage probabilistic programming to infer, generate and discover the
cognitive structure of the human intuitive theory of emotion.

Our formulation is situation-computable, operating over the same information given to
observers. Since the model does not rely on humans to judge appraisals, the latent space of
computed appraisals can be larger and more complex than empirically rated appraisal variables.
In addition to reflecting sophisticated latent Theory of Mind reasoning, computed appraisal
variables (and the learned emotion concepts) are interpretable owing to the cognitive structure
of the generative model.

(d) Comparing our model to human observers
In this paper, we compare our framework to human observers in three ways. First, we compare
our model’s inverse planning against humans observing the same game. Second, we compare
our model’s capacity to capture inferences of nuanced social emotions following outcomes of the
games. Third, we test the model’s ability to adjust to personalizing information about individual
players in these games.

The ‘Split or Steal’ game is socially rich, involving high-stakes social coordination, trust,
betrayal, equity and public reputation. In the first set of experiments, we tested hypotheses about
how observers reason about players’ action planning. Module (1) formalizes these hypotheses
by inverting forward planning models to infer observers’ attributions of players’ preferences and
beliefs. Empirical studies of social games make evident that players value not only money, but
also how their actions will impact others [89–92]. In a one-shot social dilemma like the ‘Split
or Steal’ game, an agent maximizing monetary payoff would always choose to defect [2]. By
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contrast, humans playing ‘Split or Steal’ chose to cooperate about half of the time [1], because
they bring non-monetary social values into these games. We predicted that observers infer that
players are motivated by social values, such as inequity aversion and reputational signalling; and
observing a player’s choice to cooperate or defect leads people to update their understanding of
the player’s preferences and beliefs. The results support these hypotheses, indicating that latent
action planning representations are intuitive to observers and that the cognitive structure of the
inverse planning model captures observers’ mental state inferences.

In the next set of experiments, we investigated the cognitive structure of emotion concepts.
To sample the sophistication and breadth of observers’ intuitive reasoning about players in
this game, we collected empirical predictions of 20 nuanced emotion labels, which we adapted
for this task from prior work [54,68] (see the electronic supplementary methods §S1e). We
hypothesized that capturing the empirical pattern of emotion predictions requires that a model
represent observers’ intuitive reasoning about players’ decision-making and event appraisals.
Module (2) formalizes hypotheses about how observers use representations of preferences and
beliefs to reason about players’ event appraisals. Drawing from Appraisal Theories, we predicted
that emotion judgements depend on specific computations (achieved utility, prediction error,
counterfactuals) over inferred mental states. For example, emotions like joy/happy are functions
of achieved utilities [4] and fury/rage are functions of prediction errors [68]. Emotions like
disappointment depend on counterfactual reasoning about how events outside of a person’s
direct control could have been different [93], and embarrassment/shame depend on counterfactual
reasoning about how one’s own actions could have been different [94]. Module (3) learns
transformations between computed appraisals and empirical emotion predictions. Lesions of
these modules confirm that inverse planning is necessary to capture emotions that depend on
inferences of why a player acted a certain way (not simply what events the player experienced),
like guilt, and social appraisals are necessary to capture emotions that depend on interpersonal
interactions, like embarrassment and envy.

Finally, a key empirical phenomenon is that individual people may react differently to the
same outcome.2 Observers can use multiple sources of information to predict individual players’
emotions. Because our model links prior beliefs, intentional actions, appraisals of subsequent
events and emotion concepts, new information (e.g. different priors) propagates through the
causal structure to update connected representations. We provided observers with personalizing
information about specific players and collected preference and belief attributions and emotion
predictions, for the individual players. Thus, our model can capture how observers update their
emotion predictions based on personalizing information.

3. Inverse planning with social values
In our model of observers’ intuitive theory of emotion, inferred mental contents serve as the basis
for computing appraisals and predicting emotions (figure 1). Module (1) implements a richly
structured inverse planning model [15,17], which simulates how observers infer preferences and
beliefs by reasoning over an intuitive theory of players’ minds. A forward model simulates what
actions would be made by players with varying preferences and beliefs by formalizing causal
relations between players’ mental contents and their behaviour. Bayesian model inversion then
enables inference of the joint preferences and beliefs that a player was likely to have, given the
player’s decision to cooperate or defect in the ‘Split or Steal’ game.

In the forward planning model, we incorporate social equity utilities that account for people’s
actual decisions in social dilemmas [97,98]. Fehr & Schmidt [97] proposed that humans are
motivated, to varying degrees, by two kinds of concerns for fairness in social interactions.
Disadvantageous inequity aversion (DIA), a preference not to end up worse off than others, is
a powerful and culturally conserved social preference [99,100]. In the context of ‘Split or Steal’,

2Indeed, Appraisal Theory was initially proposed [95] and later developed [96] to explain how the same event might evoke
different emotions, in different people, on different occasions.
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DIA is a preference not to be left with nothing while the other player steals the whole pot. In
addition, Fehr and Schmidt observed that people’s choices reflect advantageous inequity aversion
(AIA), a preference not to extract more than one’s fair share of a resource. In the context of ‘Split
or Steal’, AIA is a preference not to steal the whole pot and leave the other player with nothing.
Rational planning in the game thus maximizes utility over both non-social (monetary) and social
(interpersonal inequity aversion) preferences, given expectations of the opponent’s choice.

We hypothesize that observers have an intuitive grasp of players’ social and monetary values.
After observing a player’s choice, observers update their estimate of the player’s monetary and
social values, and expectations. We begin by simulating players in an anonymous version of ‘Split
or Steal’, and then extend the forward model to the actual public game.

(a) Inverse planning in an anonymous game
We first simulated how players privately decide whether to cooperate (C) or defect (D) in an
anonymous version of ‘Split or Steal’. In this ANONYMOUSGAME model, players have preferences
exclusively for ‘base’ features, i.e. variables that can be objectively calculated from the situation
and do not require mental state inference. We use the utility parametrization of Fehr & Schmidt
[97] as our base features: player 1’s total monetary reward (Money), how much more player 1
received than player 2 (advantageous inequity, AI), and how much more player 2 received than
player 1 (disadvantageous inequity, DI); see the electronic supplementary material, figure S2.

Payoffs to the players are determined by the action of player 1 (a1), the action of player 2 (a2)
and the amount of money in the jackpot (pot). Thus, the outcome of a game is represented by the
tuple 〈a1, a2, pot〉, and the base features are deterministic functions of this tuple.

We simulate player 1’s decision making as approximately rational subjective utility
maximization over these base features. Simulated players are endowed with preferences and
beliefs, which are randomly sampled from an empirically fit prior (see BasePrior in the electronic
supplementary methods §S1j). Continuous preference weights (ω ∈ [0, 1]) modulate the subjective
utility that player 1 derives from the base features. A weighted expectation about what choice the
opposing player will make (πa2 ∈ [0..1]) models player 1’s latent belief about P(a2). A prior belief
about the expected value of the game (πMoney ≥ 0) models how much money player 1 expected to
win before the player learned how much money was actually in the pot.

A simulated player calculates the expected utilities of the action choices (a1 ∈ {C, D}) based on
its preferences and beliefs:

E
[
Ubase(a1)

]
=

∑
a2

πa2 ·
[
ωbase

Money · ν
(
Money − πMoney

) − ωbase
AIA · ν

(
AI

) − ωbase
DIA · ν

(
DI

)]
. (3.1)

The negative signs associated with AI and DI indicate that players seek to minimize inequity, thus
ωbase

AIA and ωbase
DIA reflect a player’s advantageous and disadvantageous inequity aversion. The value

function ν(·) and the reference point πMoney reflect insights from prospect theory and the study
of how people value uncertain rewards [101] (for details of implementation, see the electronic
supplementary methods §S1f). Because pot sizes in the ‘Split or Steal’ game can range from $1
to over $100k USD, we adjust the utilities to reflect people’s nonlinear valuation of rewards.
The value function (ν) applies a transformation commonly used in behavioural economics to
account for people’s diminishing marginal utility [102,103]. For our purposes, ν amounts to
a sign-adjusted logarithm that treats gains and losses symmetrically. Because players on the
‘Split or Steal’ gameshow, and observers in our studies, know the range of pot sizes before the
game begins, we model players as having an expectation about how much they would win. The
reference point πMoney adjusts monetary utility relative to how much a simulated player expected
to win before learning the pot size. Rewards that fall short of the reference point are perceived as
negative utilities.

To calculate the expected utility of an action (a1), simulated players integrate subjective utility
over the opposing player’s possible actions (a2 ∈ {C, D}). This involves scaling the subjective utility
of an outcome by player 1’s belief that player 2 will choose a2. The expected utility of a simulated
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player choosing action a1 is E[Ubase(a1)]. Decision making follows probabilistically by sampling
from the softmax of expected utility: P(a1 |ωbase, πa2 ) ∝ exp(λ · E[Ubase(a1)]).

The softmax function is a standard decision policy for modelling an agent’s planning and
decision-making in uncertain environments [104] and for observers’ reasoning about others’
noisy choices [15,16,36,38,40]. The thermodynamic parameter λ determines how rationally versus
noisily decisions reflect differences between the expected utilities of choices considered by a
simulated player. We marginalize over πMoney since we did not collect empirical attributions or fit
the prior.

The ANONYMOUSGAME forward planning model can be inverted to infer observers’
attributions of mental contents to players in an anonymous version of the ‘Split or Steal’
game (see the electronic supplementary material, figure S3 for empirical attributions and model
inference of preference and belief weights). However, as a model of the ‘Split or Steal’ game, the
ANONYMOUSGAME model is incomplete. To serve as a basis for emotion prediction for the public
game, we needed to introduce a salient aspect of the Golden Balls gameshow: the audience.

(b) Second-order preferences: players’ motives for reputation
The ANONYMOUSGAME model is missing a critical element of social strategy games: players’
motive to enhance their reputation. For example, Arthur may choose to cooperate primarily
to signal his cooperativeness to future social partners. We hypothesize that human observers
can infer such second-order preferences, and that inferences about the motive to enhance one’s
reputation underlie prediction of key social emotions, like embarrassment and pride [105]. We
therefore extended the generative model of decision planning in an anonymous game to include
players’ reputation concerns.

A standard way to incorporate reputation concerns might be to add additional utility variables
that define the reputational consequences players expect of their actions. Unlike the base features,
the reputation signals cannot be objectively computed directly from the events and must therefore
be specified for each situation and action. We follow a more cognitively natural strategy, whereby
players apply their own Theory of Mind to anticipate how others will evaluate them [36]. To
choose an action that is reputation enhancing, players must first infer how their behaviour will be
interpreted by others. This requires an embedded inference loop. We model a simulated player’s
expected reputation as the inferences a rational observer would make about the weights of the
player’s base utility function (ωbase). The inferred base weights are themselves weighted and
treated as ‘second-order’ utilities. Thus, a simulated player’s expected reputation reflects the
player’s belief, and preference, about what other people will think the player’s values are.

In the PUBLICGAME model, we introduce a reputation utility for each base feature. The
expected reputational consequences of a player’s action are weighted by randomly sampled
preferences (ωrepu), which model how much the player cares about other people’s beliefs. The
expected utility of an action is the sum of the expected base utilities and the expected reputation
utilities:

E[Ubase+repu(a1)] = E[Ubase(a1)] − ω
repu
Money · ν(E[ωbase

Money | a1] · pot)

+ ω
repu
AIA · ν(E[ωbase

AIA | a1] · pot)

+ ω
repu
DIA · ν(E[ωbase

DIA | a1] · pot), (3.2)

where E[ωbase | a1] is a simulated player’s expectation of what other people would infer about
the player’s base preference, if the player chooses a1. The expected base utility of an action,
E[Ubase(a1)], is the same as in the ANONYMOUSGAME model, equation (3.1). The sign on each
reputation utility is opposite that of the corresponding base utility, reflecting the hypothesis
that observers believe that players desire to be seen as motivated to improve equality, and not
motivated to selfishly maximize their own monetary payoffs. We assume that reputation utilities
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are functions of the pot size (the higher the stakes of a decision, the more consequential the
reputation signals).

A simulated player calculates the expected utility of an action, E[Ubase+repu(a1)], based on
randomly sampled base preferences (ωbase), reputation preferences (ωrepu), belief about which
action the opponent is likely to choose (πa2 ), prior belief about the expected value of playing
the game (πMoney) and beliefs about the inferences other people will make of the player’s
base preferences (E[ωbase | a1]). Decision making follows probabilistically by sampling from the
softmax of expected utility:

P(a1 |ωbase,ωrepu, πa2 ) ∝ exp(λ · E[Ubase+repu(a1)]). (3.3)

Preferences, and the belief about the opponent’s action, are sampled from an empirical prior (see
GenericPrior in the electronic supplementary methods §S1j).

The purpose of building a generative model that simulates how players with varying
preferences and beliefs make decisions in the ‘Split or Steal’ game, is to capture observers’ latent
reasoning about players’ intentional actions. Namely: What were a player’s mental contents given
that the player chose to cooperate or chose to defect? Since the forward model of decision making
is invertible, it supports inverse inference of a players’ preference and belief weights. We invert
the PUBLICGAME forward model using Bayes’s rule:

P
(
ω, πa2 | a1

) ∝ P
(
a1 |ω, πa2

) · P
(
ω, πa2

)
, (3.4)

where ω is the six-element vector of base and reputation preference weights. P(ω, πa2 | a1) is the
joint posterior distribution over preference and belief weights conditional on player 1’s action.

(c) Comparison to human observers
The first goal of our model is to capture the inferences observers make about players’ preferences
and beliefs. We therefore tested whether human observers systematically infer the players’
values and expectations from observing a single choice, and whether we could capture these
inferences by inverting our generative model of players’ behaviour. We presented Amazon mTurk
participants with scenarios depicting one player’s decision to cooperate or defect on the ‘Split
or Steal’ gameshow. These scenarios were synthesized from the range of possible pots and
decisions, rather than reflecting any actual recorded episode. The observers judged players’ base
and reputation preferences, and belief about the other player’s intended decision (see electronic
supplementary methods §S1a for details of the data collection).

We found that human observers readily and consistently inferred the psychological features
from under-specified input. Observers’ judgements and the inverse inference of the PUBLICGAME

model are shown in figure 2. Human observers and the model made very similar inferences from
the same observed actions. For example, observers inferred that Arthur’s (player 1’s) decision
to cooperate means that he was likely to be less motivated by acquiring as much money as
possible (base Money), more averse to gaining an unequal and superior outcome (base AIA),
and less adverse to receiving an inferior outcome (base DIA), than if he had defected. If Arthur
cooperated, he was also judged to care more about people believing that he values other things
above maximizing his own financial gain (repu Money) and does not want to take advantage of
her opponent (repu AIA). If he defected, he was judged to care more about people believing that
he is a strong competitor and not one easily taken advantage of (repu DIA).

In sum, the PUBLICGAME forward planning model can generate plausible player choices, and
can be inverted to make inferences about players’ values from the observation of a single choice.
Observers make similar systematic inferences of players’ values from the same observation. Both
observers and our model successfully resolve an ill-posed inverse problem, to recover latent
mental contents that motivated players’ behaviour.

As a generative model of decision making, the PUBLICGAME model is much richer than is
necessary to predict players’ choices in a Prisoner’s Dilemma, which can be captured by extremely
simple models [106]. Nevertheless, our interest is in what observers infer about the latent mental
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‘How much does this player value...

   acquiring as much money as possible?’

   sharing with the other player, not 
   getting more than them?’

   having at least as much as the other 
   player, not getting less than them?’

‘How much does this player value 
  other people believing that she...

   values other things above 
   maximizing her own financial gain?’

   does not want to take advantage 
   of her opponent?’

   does not want to be taken advantage 
   of by her opponent?’

‘How confident is this player that her
  opponent will choose to Cooperate?’

Money
AIA
DIA

monetary reward to focal player
advantageous inequity aversion
disadvantageous inequity aversion 

Money

base

repu

AIA

DIA

Money

AIA

DIA

belief
a2 =  

human  judgement model inverse inference

belief
a2 = C

Figure 2. Inverse planning. Human observers were shown a player’s decision to cooperate (C) or defect (D) and judged the
player’s likely preferences and belief. Model inversion yields a joint inference of the mental contents conditional on the players’
actions. Preference weights take continuous values between zero and one. Player 1’s belief about what player 2 will choose
was rated on a 6-point confidence scale. Expectation shows the mean weight of each marginal distribution conditional on the
player’s action (a1).

contents that underlie the decisions made by others. For this purpose, the richer model better
captures the inferences human observers make and supports the subsequent inference of players’
fine-grained reactions. Most importantly for our current purposes, we expect that this richness is
necessary to capture the predictions that observers make about players’ emotions.

4. Computed appraisals
Through the successive inversion of increasingly rich generative models of behaviour, we have
built an inverse planning model that uses a player’s choice in a social game to infer the joint
posterior probability of the player’s selfish, social and reputational preferences, and belief about
the opposing player’s intended action. The preferences and beliefs inferred by Module (1) serve
as the basis for computing appraisals in Module (2) (figure 1b). Computed appraisals are latent
Theory of Mind representations: how players evaluate a new world state (the outcome of the
game) caused in part by an event outside of the player’s intentional control (the opponent’s action)
given the player’s mental contents.

As the cognitive latent space for predicting emotions, computed appraisals need to represent
the computational structure of observers’ emotion concepts. Drawing from prior work, we define
primitive appraisal computations, which are applied over inverse planning representations. We
implement four types of appraisal computations based on achieved utility (AU), utility prediction
error (PE) and counterfactual utilities with respect to the actions of player 1 and player 2 (CFa1
and CFa2, respectively). The rest of this section explains how these appraisals work in high-level
terms; formal definitions are given in the electronic supplementary methods §S1i.

In the PUBLICGAME model, players make decisions by calculating the expected utility of
their actions. When the opponent’s action is revealed, and the outcome of the game is known,
simulated players learn the utilities they achieved (AU) and the error signals between these
outcomes and what they expected (PE). The same mental contents that led a simulated player
to choose an action can be used to compute the utilities that would have been achieved, if the
player had made a different choice (CFa1), or if the opponent had made a different choice (CFa2).
We leverage these rich mental state representations to compute appraisals over monetary, social
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and reputational representations, incorporating the simulated player’s beliefs about what was
going to happen, what did and did not happen, and how the player and the opponent could have
changed what happened. Figure 3a shows how the events of the ‘Split or Steal’ game load onto
the computed appraisals.

Computed appraisals follow a similar nomenclature as utilities in §3, defined in terms of
‘Money’, ‘AIA’ and ‘DIA’ utility terms, and both first-order (‘base’) and second-order (‘repu’)
preferences. To illustrate more concretely how our four types of appraisals are defined, consider
just the base monetary reward. During planning, the base monetary utility a player expected
is written as EUbase

Money. When the player learns the opponent’s decision (and correspondingly,
the outcome of the game), the same mental contents that led to the player’s choice determine
the subjective utility that the player achieves. Thus, the achieved utility (AU) for base monetary
utility, written as AUbase

Money, reflects the simulated player’s subjective valuation of the event based

on the player’s preference (ωbase
Money) and how much Money the event confers.

Prediction error (or ‘expectation violation’) is the discrepancy between what was expected and
what occurred. Extensive research illustrates that prediction error is a fundamental computation
in first-person emotion experience [107–113] and in third-person emotion understanding [13,114]
of emotions like surprise, disappointment and fury/rage [4,68,115]. For a simulated player’s base
utility terms, we compute prediction error (PE) from the difference between the achieved utility
and expected utility. In addition, we use a player’s weighted belief to compute the absolute
prediction error of the opponent’s action (how unexpected the opponent’s behaviour was):∣∣PE πa2

∣∣.
Counterfactuals involve mental simulations of alternative realities, and are central to

causal reasoning. For our current purposes, it is comparing what could have happened to
what did happen. Counterfactual judgements are a fundamental computation in first-person
experience [19,116–119] and in third-person emotion understanding [4,63,120–123]. Reasoning
about counterfactual events outside of a person’s direct control is implicated in emotions like
disappointment and relief, while reasoning about how a person could have changed the situation
by choosing a counterfactual action is implicated in emotions like embarassement, regret and guilt
[93,94,124,125].

We compute counterfactual contrasts based on the action not chosen by each player. For the
opponent’s action counterfactual (CFa2), which a simulated player cannot directly control, the
contrast between the counterfactual utility and achieved utility is weighted by the simulated
player’s belief that the opponent would make the other choice: π¬a2 . For the simulated player’s
action counterfactual (CFa1), the contrast is weighted by the probability that the player would
have made the other choice, given the player’s preferences and updated belief about the
opponent’s action3: P(¬a1 |ω, a2).

In sum, the machinery of inverse planning makes it feasible to compute probabilistic
representations of players’ appraisals. The latent space of computed appraisals reflects
sophisticated causal reasoning about recursive social preferences and beliefs. We now leverage
these abstract Theory of Mind representations to reverse-engineer the cognitive structure of
observers’ emotion concepts. In effect, we learn a Computational Appraisal Theory directly from
observers’ emotion judgements.

5. Emotion predictions
We now return to the challenge that we began with: testing whether our computational model
can capture the conceptual knowledge and intuitive reasoning that underlie human observers’
emotion predictions.

3The probability weighting term is based on the softmax distribution in equation (3.3). Since the simulated player has now
observed which choice the opponent made, the player’s belief about the opponent’s action is updated to reflect the player’s
knowledge: πa2 → a2. This gives a measure of how likely the player would have made the other choice (¬a1), if the player
had known which action the opposing player was going to choose.
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Figure 3. Generative structure. (a) Expectations and densities of the normalized computed appraisals.Ψ is the matrix of the
19-dimensional appraisal vectors. The legend gives the relative payoffs to the players (r1, r2), e.g. when player 1 Cooperated
and won nothing because player 2 Defected and won the whole pot, a1a2 (r1, r2): CD (0, 1). Colour indicates the outcome of
the games. (b) Example of a computed appraisal’s relationship to pot size. The x-axis shows the 24 pot sizes (non-parametric
scaling), y-axis shows the loading on simulated players’ monetary utility prediction error, colour indicates density. (c) We learn
a function (g) that transforms computed appraisals (Ψ ) into emotion predictions (E ) by scoring the empirical emotion vectors
predicted for the GenericPlayers from the joint posterior over computed appraisals. To learn the transformation parameters, we
leverage the expectations, as well as the hierarchical covariance structure of computed appraisals and of empirical emotion
attributions. The result is a sparse weights matrixβ . Expectations are shown in (a,d). Correlationmatrices shown in (c) give the
within-stimulus correlation (averaged within outcome) between computed appraisals (top) and between empirical emotion
predictions (bottom). (d) Emotion predictions for the GenericPlayers. Circles show the expected intensity for each outcome,
summing over pot sizes and the eight photos. Shading shows the density of judgements.E is thematrix of the 20-dimensional
emotion prediction vectors. Each expectation (and associated distribution) reflects n= 1 108 judgements of n= 554 observers.

(a) Human observers’ emotion predictions
We collected human observers’ predictions of the emotions players would experience when the
outcome was revealed in ‘Split or Steal’ games. We collected two datasets from online participants.
The training data (n = 554) were used to learn a transformation between the latent space of
computed appraisals and the emotion predictions, which was then used to predict emotions for
the test data (n = 1 512). In the test data, observers were presented with specific information about
each focal player. Collection of these data, referred to as the SpecificPlayers, will be described in §6.
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In the training data (GenericPlayers), observers were briefed on the structure of the ‘Split or
Steal’ game and watched a video taken from the show in which the presenter explains the
rules and two players negotiate in an attempt to convince the other to choose ‘Split’ (cheap
talk negotiation). The introductory video ends before the players reveal their choices. Observers
completed eight trials, in which they saw a photograph of the focal player (designated player
1), a pot size (ranging from $2 to $207365 USD), and the actions chosen by both players in that
game. Observers saw two games for each category of payoff: CC where both players cooperated
and each won half; CD where player 1 cooperated and received nothing; DC where player
1 defected and took everything; and DD where both players defected and both got nothing.
Observers then predicted how much player 1 would experience 20 different emotions: Devastation,
Disappointment, Contempt, Disgust, Envy, Fury, Annoyance, Embarrassment, Regret, Guilt, Confusion,
Surprise, Sympathy, Amusement, Relief, Respect, Gratitude, Pride, Excitement and Joy.

To learn a transformation between the model and human emotion judgements, we make
use of the rich structure present in the observers’ emotion predictions. The GenericPlayers
data (figure 3d) illustrate that, even from sparse event depictions, human observers made
systematically different emotion predictions for players in the four different outcome categories.
At the coarsest qualitative level, observers predicted that players who won money (CC and DC

outcomes) would experience more positive emotions and players leaving with nothing (CD and
DD outcomes) would experience more negative emotions (figure 3d). However, observers’ emotion
predictions do not just reflect the monetary outcomes of the game. For example, when player 2
defects, player 1 necessarily receives no monetary reward, yet observers predicted that player
1 would have different emotional reactions depending on whether he chose to cooperate (more
envy and contempt) versus defect (more guilt). Note that preference/belief attributions (described
in §3) and emotion predictions were collected from mutually exclusive groups to avoid cueing
observers to think about emotion experience in terms of the planning variables or vice versa.

(b) Learning the latent structure of the intuitive theory of emotion
We hypothesized that human observers infer players’ values and expectations from their actions
using inverse planning, and predict players’ emotional reactions to events based on those inferred
mental states. In this model, emotion predictions reflect observers’ reasoning about how players
would react to an event given the particular players’ beliefs and preferences. Critically, we assume
that emotion prediction relies on inverse planning. Inferred mental contents, generated via the
inversion of an intuitive Theory of Mind, form the basis for reasoning about how a player will
evaluate events. In our proposed model of the intuitive theory of emotion (figure 1), computed
appraisals serve the functional role of linking observations (the events in a ‘Split or Steal’ game)
and emotion concepts. Thus we call our model of emotion prediction based on mental states
inferred from inverse planning, a COMPUTEDAPPRAISALS model.

In Module (1), the model uses the pot size and player 1’s chosen action to update estimates
of player 1’s preferences and beliefs. In Module (2), these preferences and beliefs then affect how
the player appraises the situation. To generate computed appraisals for the GenericPlayers, we ran
the PUBLICGAME model in the same way as in §3b: using an empirically derived prior over the
base preferences and beliefs, we inverted the hierarchical generative model of behaviour. Then,
we computed how simulated players would appraise the outcome of the game. Appraisals are
computed as the achieved utilities, prediction errors and counterfactuals, on a player’s beliefs,
base preferences and reputation preferences. See the electronic supplementary methods §S1i for
details of how appraisals are computed, and the electronic supplementary methods §S1j for
details about the priors. Module (3) transforms computed appraisals into emotion predictions
by applying learned emotion concepts: functions that translate appraisal loading into emotion
intensities. Thus, before we can generate emotion predictions, we need to learn the ‘meaning’ of
each of the 20 emotion labels that human observers rated, in terms of the set of appraisal variables.

To learn the function relating emotion labels to computed appraisals, we made a strong
assumption about the generative structure of observers’ emotion predictions: when people are
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Figure 4. Appraisal structure of the intuitive theory of emotion. The β weights of the transformation were learned based on
the joint distribution of appraisals and the joint distribution of emotion predictions for the GenericPlayers. A Laplace prior over
theβ weights induces a sparse solution. To learn the scale of the prior, we cross-validated on subsets of the SpecificPlayers and
generated emotion predictions for the leftout players. Saturation indicates that the 99% CI does not overlapwith zero. (a) Mean
weights of the learned transformation. (b) These log-scale plots show the expectation, 95% and 99% CI of the weights learned
for two example emotions, gratitude and embarrassment.

asked to predict a player’s emotions, they do not make 20 independent inferences but rather infer
a joint distribution over the player’s preferences and beliefs, and reason about how these inferred
mental contents would cause the player to evaluate the situation (figure 1). For instance, if player
1 cooperated while player 2 defected (CD), how much an observer thinks that player 1 wanted to
avoid being disadvantaged will be reflected in that observer’s predictions of player 1’s experience
of both embarrassment and envy. Thus, the covariance patterns of observers’ emotion predictions
reflect the latent structure of their intuitive theory of psychology. Using the GenericPlayers training
data, we leverage this information to learn a mapping between people’s empirical emotion
predictions and the joint distribution over appraisal variables generated by the model.

Figure 3 shows the model’s computed appraisals and observers’ emotion predictions for the
GenericPlayers. Figure 3a,d show the expected values given an outcome. Figure 3c shows the
average within-stimulus correlation matrix for each outcome. Note that formalizing computed
appraisals as a probabilistic generative model permits us to leverage within-stimulus covariance
in latent structure discovery.

Based on the GenericPlayers data shown in figure 3, we learn a sparse transformation between
the joint distribution of computed appraisals and the joint distribution of emotion predictions.
Specifically, we treat the empirical emotion prediction vectors as observations from some function
of the posterior distribution of computed appraisals (g in figure 3c). We find a transformation
of the appraisal distribution that maximizes the probability of observing the empirical data
under a Laplace prior on the transformation coefficients. This yields a sparse transformation
between computed appraisals sampled from the COMPUTEDAPPRAISALS model and continuous
quantitative predictions of the player’s emotions.
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This model recapitulates the social cognitive reasoning that allows human observers to
predict players’ emotions for arbitrary games. The emotion concepts shown in figure 4 reflect
a computational hypothesis about the intuitive theory of emotion. This hypothesis says that
observers’ emotion predictions reflect latent computations over players’ inferred mental contents.
For example, a player who is inferred to value money highly will experience more gratitude
when she wins more money (AUbase

Money), and when she wins more than she expected (PEbase
Money).

A player will experience more gratitude when her opponent could have prevented her from
winning money but chose not to, and less gratitude when her opponent could have chosen an
action that would have caused the player to win money but instead chose an action that resulted
in the player winning nothing (CFa2

base
Money). The more a player cares about not being in a socially

disadvantageous position the more gratitude she will experience when her opponent could have
taken advantage of her but chose not to, and the less gratitude she will experience when her
opponent decided to exploit her (CFa2

base
DIA ). The more a player is motivated to be seen as a fierce

competitor, the less gratitude she will experience (AUrepu
DIA ).

The appraisal pattern is quantitatively and categorically unique for each emotion, suggesting
that these 20 emotions are conceptually distinct. Much of the learned structure qualitatively
aligns with existing emotion taxonomies [68,72,126]. We next test if the computational hypothesis
formalized by the COMPUTEDAPPRAISALS model captures human emotion predictions.

(c) Comparing the computed appraisals model to human observers
The COMPUTEDAPPRAISALS model generates a joint distribution over 20 emotions based on
the two players’ actions and the pot size 〈a1, a2, pot〉 by generating computed appraisals under
a prior distribution of player 1’s preferences and belief P(ω, πa2 ). Using the transformation,
we learned based on the GenericPlayers, we generated personalized emotion predictions for
20 SpecificPlayers. The SpecificPlayers are described in detail in §6, but before considering how
personalizing information biases emotion predictions for individual players, we first consider the
overall structure of the model. The COMPUTEDAPPRAISALS model captures the overall pattern
of human emotion judgements. Emotion predictions generated by the model (averaged over
players and pot sizes) are shown in figure 5a. Positive emotions are predicted when players win
money and negative emotions when players lose money. In addition, the model captures some
of the more nuanced features of the empirical judgements. When a player’s opponent defects,
causing the player to leave with no money, the model (like human observers) predicts more envy
if the player cooperated (CD) and more regret if the player defected (DD). When the opponent
cooperates, causing the player to win money, the model (like human observers) predicts more
relief and gratitude if the player cooperated (CC) and more guilt if the player defected (DC).

To assess the explanatory power of the model, we use Lin’s Concordance Correlation
Coefficient4 (ccc), which is a metric of the agreement between model predictions and a ground
truth measure (the empirical emotion predictions) [127], and bootstrap resampling to estimate
95% confidence intervals (CI). Across all players, emotions, outcomes and pot sizes, the
COMPUTEDAPPRAISALS model fit the observer’s emotion predictions for the SpecificPlayers data
well: ccc = 0.854 [0.844, 0.859] (figure 6c).

Predictions of different emotions depend on different types of information, making it likely
that a model’s latent representations will enable it to capture some emotions better than others.
Similarly, human observers can find a stimulus ambiguous with regard to one emotion but
unambiguous with regard to another (figure 6b shows the reliably of observers’ predictions and
how well the COMPUTEDAPPRAISALS model captures the empirical emotion predictions for the
SpecificPlayers). To test whether the rich generative structure of the COMPUTEDAPPRAISALS model
significantly contributed to its ability to capture observers’ emotion predictions in this task, we
compared the COMPUTEDAPPRAISALS model with two simpler alternatives.

4Whereas Pearson’s r is insensitive to whether samples differ in intercept or scale, Lin’s ccc penalizes the model’s deviations
from human judgements by the mean squared error. Also see the electronic supplementary methods §S1l(i).
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‘How motivated is he to
avoid disadvantageous inequity?’
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member

Software
engineer model

inverse inference
human

emotion prediction

learned emotion concept
(base DIA dependencies) model

emotion prediction

Envy0 1 EnvyEnvy 0 10 1

Devast Disap ContemDisgu Envy Fury Annoy Embar Regret Guilt Confus Surpri Sympa Amuse Relief Respec Gratit Pride Excite Joy

‘How much disadvantageous inequity
aversion did he experience

relative to what he expected?’

‘How much disadvantageous inequity
aversion would he have experienced

if his opponent had made 
the other decision?’

(b)

(a) :

Figure 5. Inferred emotion predictions. (a) Emotion predictions generated by the ComputedAppraisals model, averaged across
players and pot sizes. (b) Example of how the model personalizes emotion predictions. Based on the GenericPlayers data, the
model learned that envy is a function of appraisals derived from a player’s aversion to disadvantageous inequity (base DIA).
When a player appraises that he is in a more socially disadvantageous position than he expected to be (negative prediction
error), the negative loading on PEbaseDIA translates to greater envy intensity. Similarly, when a player appraises that he would
have been in a less disadvantageous position if his opponent had made the other choice (positive counterfactual), the positive
loading on CFa2baseDIA translates to greater envy intensity. Given that they chose to cooperate (a1 = C), the model infers that the
engineer caresmore about not ending up in an inferior position (ωbase

DIA ) than the councilman.When the opposing player defects
(a2 = D), the model predicts greater intensity of envy for the engineer because he is inferred to have a stronger preference.
Human observers similarly predicted that the engineer will experience more envy than the councilman inCD games. Photos
of the players have been downsampled for the purpose of publication.

(d) Inverse planning lesion model
The INVERSEPLANNINGLESION (figure 6a) selectively blocks inverse planning by inferring
appraisal variables based on the prior distribution of beliefs and preferences (before either player
acts), rather than the posterior distribution (updated based on the decision of player 1). Players
simulated by the INVERSEPLANNINGLESION model are effectively forced to choose a ball at
random, without looking inside. Without a causal link to behaviour, the inverse inference of
players’ preferences and beliefs reduces to the prior. Thus, the posterior probability in equation
(3.4) becomes: P(ω, πa2 | a1) = P(ω, πa2 ). We similarly lesion the embedded inverse planning loop,
which simulates how their behaviour will be interpreted by others. Appraisal generation is
identical to the COMPUTEDAPPRAISALS model and still depends heavily on a1.

To illustrate the INVERSEPLANNINGLESION, consider the effect of simulated players’ beliefs
about their opponents’ actions (πa2 ) on the appraisals made by each model. In the full
COMPUTEDAPPRAISALS model, as for human observers, simulated players only tend to cooperate
when they believe their opponent is also going to cooperate (see E[πa2 | a1=C] in figure 2). Players
simulated by the INVERSEPLANNINGLESION model select balls randomly, so the expectation of
monetary utility reflects the prior on belief, P(πa2 ), rather than what beliefs were likely given the
player’s action, P(πa2 | a1).

Across all players, combinations of decisions and pot sizes, the INVERSEPLANNINGLESION

model showed a lower fit to human observers’ emotion predictions (ccc = 0.762 [0.760, 0.764];
figure 6c). The effect of lesioning inverse planning is particularly evident in specific emotions.
For instance, the INVERSEPLANNINGLESION caused notable decrements in the capture of envy,
surprise, relief, gratitude, pride and joy (figure 6b).
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Figure 6. Predicting specific player’s emotions. Human observers made preference and belief attributions to the 20
SpecificPlayers, based on a photo, brief description and decision, in the ‘Split or Steal’ game. (a) Based on what a SpecificPlayer
was judged to care about and to expect, the models generated predictions of that player’s emotion reaction in 24 ‘Split or
Steal’ games (four outcomes and eight pots). Bar colours in (b–e) correspond to the models in (a), and grey windows give
the 95% bootstrap CI of the inter-rater reliability of the emotion predictions. (b) Concordance between predictions generated
by the models and human observers for every emotion (collapsing across players, outcomes and pot sizes). (c) Overall fit
the emotions observers predicted for the 20 SpecificPlayers. (d) The photos and descriptions of SpecificPlayers biased human
observers’ judgements of the players’ motivations, expectations and emotional reactions. This plot shows howwell the models
were able to predict the bias in emotion predictions based on observers’ judgements of a player’s preferences and belief. Players
are ordered based on how reliably observers’ emotion predictions differed from the emotions predicted for the GenericPlayers
(grey windows). The model score gives the variance-scaled Pearson correlation. (e) Correlation between the relative difference
predicted by the models and the relative difference in observers’ emotion predictions. (b,c,e) Each bar reflects a model’s
performance based on n= 12 096 emotion predictions of n= 1 512 observers. (d) Each bar reflects a model’s performance
based on a minimum of n= 579 empirical predictions of all 20 emotions.

(e) Social lesion model
In the SOCIALLESION model, we removed all of the social (non-monetary) values attributed
to players. This lesion allows us to test the importance of these social values for successfully
generating human-like emotion predictions. The SOCIALLESION model leaves forward-
planning intact: simulated behaviour, inferred monetary utility and prediction error, are all
identical to the full COMPUTEDAPPRAISALS model (figure 6a). The social lesion can be
likened to observers having the intuitive theory that players’ emotional reactions depend
only on monetary considerations. The SOCIALLESION model predicts 20 emotions from the
transformation of the joint distribution of monetary utility and monetary prediction error,
P(AUbase

Money, PEbase
Money | a1, a2, pot).

Across all players, combinations of decisions and pot sizes, the SOCIALLESION model showed
a lower fit to human observers’ emotion predictions (ccc = 0.663 [0.663, 0.663]; figure 6c). As
expected, the SOCIALLESION model was largely unable to capture predictions of social emotions
like envy, guilt, gratitude and respect. Interestingly, the SOCIALLESION model also provided a poor
fit for predictions of some emotions that were well fit by monetary appraisals of lottery outcomes
[4]. For example, observers’ predictions of players’ joy are positively related to monetary payoff
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in both lotteries and ‘Split or Steal’: for a given action, players who win $12k USD are predicted
to experience more joy than players who win $6k USD. However, for a given pot size in ‘Split or
Steal’, observers predict similar levels of joy for players who cooperated and took half the pot, as
for those who defected and took twice as much. Human observers predict that joy reflects social
values. With access to only monetary appraisals, the SOCIALLESION can capture the positive
relationship between joy and the pot size, but not the way in which predictions of joy depend
on the social consequences of an action.

6. Personalizing emotion predictions
So far, we have investigated how human observers, and the COMPUTEDAPPRAISALS model,
predict emotional reactions for players after observing only a single action in the game. However,
the structure of the game means that single actions are highly ambiguous. An observer who
personally knows a specific player might be able to use prior knowledge, from outside the
game, to inform inferences about the player’s likely values and expectations [128,129]. If the
COMPUTEDAPPRAISALS model is a good approximation of how human observers reason about
players’ emotions, it should also be able to predict the emotions observers predict specific players
will experience.

To mimic prior knowledge of the players, we constructed 20 SpecificPlayers, each composed of a
unique headshot and brief description. The descriptions included, ‘Doctor, volunteering in South
Africa with Doctors Without Borders’, ‘Software engineer at Google’, and ‘City council member,
about to start campaigning for State Senate’. We hypothesized that even such sparse information
would evoke stereotypes that allow human observers to update priors over the players’ likely
preferences and beliefs.

To test this hypothesis, we asked human observers to rate how much each SpecificPlayer
actually valued, and valued others believing that they valued, Money, AIA and DIA, and what
the players predicted their opponents would do, given the players’ decisions in ‘Split or Steal’.
After being familiarized with the ‘Split or Steal’ game, each observer made preference and
belief attributions to eight players. In each trial, observers were shown a player’s description
(a photo and career), the player’s choice and the pot size. Confirming our hypothesis, human
observers made consistent and distinct preference and belief attributions to SpecificPlayers, which
differ from the attributions made to the unspecified GenericPlayers. For example, the software
engineer is viewed as more motivated to avoid being taken advantage of than the city councilman,
even when both were shown to have cooperated (figure 5b). The overall patterns of emotions
observers predicted for the GenericPlayers were replicated by the emotion predictions made for
the SpecificPlayers in this experiment. No player is expected to experience more envy after winning
money than not winning, for example, but how much envy observers expect a player to experience
differs between players. See the electronic supplementary material §S6 for a complete example.

(a) Simulation of the bias induced by personalizing cues
If a model has learned an accurate mapping from computed appraisals to emotion judgements,
then it should be sensitive to variation in the psychological characteristics attributed to specific
players, which are the bases for computing appraisals. The key generalization test is therefore
whether the COMPUTEDAPPRAISALS model accurately predicts how emotion predictions will
differ between players in the same situation, based on observers’ ratings of each player’s
preferences and beliefs.

The empirical expected difference between emotions predicted for a SpecificPlayer and the

GenericPlayers is given by �eplayer = 〈δ devast.
CC , δ devast.

CD , . . . , δ joy
DD 〉 where,

δ
joy
DD = E[ joy | DD; player] − E[ joy | DD; generic].
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In similar manner, the expected difference predicted by a model, given by �êplayer, is the difference
between the emotions a model predicted for a SpecificPlayer and for the GenericPlayers. Since this
difference is calculated relative to a model’s own prediction of the GenericPlayers emotions, a
model that fails to fit the absolute expected emotion intensities can still capture how observers’
emotion predictions for SpecificPlayers change relative to GenericPlayers.

The COMPUTEDAPPRAISALS model was able to capture some of the bias in human
observers’ emotion predictions for SpecificPlayers. Across all SpecificPlayers, the fit between the
predicted difference �ê of the COMPUTEDAPPRAISALS model and the empirical difference
�e was: ccc = 0.439 [0.424, 0.449], Pearson r = 0.471 [0.460, 0.483]. However, human observers
disagreed amongst themselves about how emotion predictions should be personalized for
each SpecificPlayer. The emotions predicted for some players reliably differ from the emotions
predicted for the GenericPlayers, whereas other players did not elicit reliable differences (�e). We
therefore separated the correlations in emotion prediction bias for each SpecificPlayer in figure 6d.
Correlations are scaled by the total variation (see the electronic supplementary methods §S1l(ii)).
The COMPUTEDAPPRAISALS model was better able to capture the relative difference in predicted
emotions for the SpecificPlayers that evoked more reliably different emotion predictions. We
hypothesize that the COMPUTEDAPPRAISALS model is mimicking human observers’ adjustment
of emotion predictions, based on computed appraisals with personalized values and expectations.

Neither the INVERSEPLANNINGLESION model nor the SOCIALLESION model were able
to generate personalized emotion predictions (figure 6d,e). Despite predicting the expected
emotion intensities nearly as well as the COMPUTEDAPPRAISALS model (figure 6c), the
INVERSEPLANNINGLESION model largely failed to predict how personalizing information
biased emotion predictions relative to the generic players: ccc = 0.089 [0.069, 0.098], Pearson
r = 0.107 [0.083, 0.118]. The SOCIALLESION model yielded a similarly low correlation:
ccc = 0.116 [0.116, 0.116], Pearson r = 0.146 [0.146, 0.146].

7. Discussion
This work computationally models how observers predict other’s emotions. We formalize
emotion prediction as a Bayesian intuitive theory of emotion by building on modelling work
from psychology, computer science and behavioural economics. Integrating these approaches in
a cognitively structured model enables us to investigate how observers infer, reason over and
predict, abstract representations of other’s mental contents. A contribution of this work is in
illustrating how to modularly combine theory-based computational models in a causal Bayesian
framework. The three Modules (figure 1) implement general psychological hypotheses but are
tailored to the context of the ‘Split or Steal’ game. Each could be improved to better capture human
cognition both within this domain and in general.

Module (1) instantiates a hypothesis about the causal generative structure of the mind: how
observers infer the unobservable mental contents likely to have motivated someone’s observed
behaviour. The module simulates how observers reason about what preferences and beliefs
caused a player’s action by inverting a richly structured generative model of approximately
rational decision making. The aim is to infer abstract Theory of Mind representations from the
observable features of a situation (the players’ actions and the pot size) by modelling observers’
intuitive theory of players’ minds. We define objective representations of the situations, which
are psychologically relevant but do not depend on mental state inferences. We operationalize
this using the Fehr & Schmidt [97] parametrization of social inequity aversion (electronic
supplementary material, figure S2), which reflects salient dimensions of events in the ‘Split or
Steal’ games and is also generally applicable to a large domain of dyadic interactions. The forward
planning model simulates how players plan and execute behaviours based on their beliefs
about the world and other people, and preferences for the objective situation features and other
people’s beliefs. The forward model builds up distributions over actions by sampling players
with varying preferences and beliefs from empirically derived priors. Bayesian inversion of the
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forward planning model yields inference of the preferences and beliefs that jointly motivated a
player’s observed behaviour.

Any instantiation of Module (1) expresses a hypothesis about which preferences and beliefs
are potentially at stake in a situation. For instance, if we hypothesized that observers thought that
players were only concerned with maximizing their monetary reward, we would not include
preferences for social equity, and defecting would be the only rational choice for simulated
players. Similarly, if we hypothesized that observers thought that players were not managing
their reputations, we would use the ANONYMOUSGAME model, rather than a model that
simulates players’ preferences for how they are perceived by others. However, observers expect
players to cooperate and report that players have preferences for what inferences others make
about their values. Thus, to capture the social cognition that we hypothesize observers employ to
reason about why a player chose to cooperate or defect, we instantiate a Bayesian Theory of Mind
(BTOM) model with preferences and beliefs over recursive representations of the monetary and
social features of the situation and other people. Our instantiation captures observers’ judgements
of the latent mental contents that motivated a player’s action (figure 2).

Prior BTOM models have focused on belief-desire inference (so-called ‘propositional attitudes’
[130]) via Bayesian inverse planning. BTOM models have been applied extensively to infer
motivations using POMDPs and reinforcement learning in domains where agents interact with
simple environments [15,39,42,44,131,132]. Our present work demonstrates how the machinery
of inverse planning can be extended to reason over a more general Bayesian Theory of Mind that
includes appraisals and emotions. To our knowledge, this is the most richly structured inverse
planning model to date, and the first use of inverse planning to predict emotional reactions to
subsequent events.

Module (2) instantiates a hypothesis about the computational basis of predicted emotional
reactions: how observers reason about someone’s appraisal of events. The module computes
how a simulated player would evaluate a new world state (the outcome of the game) caused
by an event outside of the player’s intentional control (the opponent’s action) given the player’s
preferences and beliefs. The specific computations are inspired by the general cognitive principles
of Appraisal Theory. We compute achieved utilities, prediction errors and counterfactuals over
monetary, social and reputational representations, incorporating the simulated player’s beliefs
about what was going to happen, what did and did not happen, and how the player and the
opponent could have changed what happened (figure 3).

To build a computational model that generates emotion predictions from contextual
information, we use situations with quantitatively well-defined features. This allows us to
investigate what abstract representations and computations observers use to translate situation
information into emotion predictions. Choosing a well-studied social context enables us to
adapt behavioural economic models of behaviour to model people’s intuitive theory of actions
and reactions. Scaling this approach to less constrained contexts will require more general
methods of computing abstract psychologically relevant representations of situations [133]. While
a Prisoner’s Dilemma can be expressed as the players’ actions, the pot size, the rules of the game
(in the case of ‘Split or Steal’, a public one-shot weak PD), the cognitively relevant features of most
real-world social interactions are harder to parse.

Large language models have recently made impressive strides in capturing patterns of
social cognition [25,26,134–137], and various neural architectures have been able to capture
some patterns of human Theory of Mind in gridworld tasks [138–140]. However, these models
have yet to approach the logical and causal reasoning capacity that humans develop by
childhood [139,141,142]. Compared to neural architecture with minimal upfront structure,
highly structured inverse planning models evidence greater sophistication and generalization,
even in Theory of Mind tasks simple enough for infants [42–44]. In our view, capturing the
breadth and sophistication of social cognition will require probabilistic generative models of
the human intuitive Theory of Mind [143]. Advances in probabilistic programming, program
synthesis and neurosymbolic methods [144–148] suggest that the relevant abstractions can be
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learned by combining theory-based inductive constraints and conducive experimental domains
[63,149–152].

Module (3) instantiates a hypothesis about the structure of emotion concepts: how observers
transform latent appraisal representations into emotion predictions (an example is shown
in figure 5). In the present work, we target retrospective emotions (emotions that occur in
response to the outcome of the game) and did not include prospective emotions that concern
uncertain future events (e.g. hope, fear; see the electronic supplementary methods §S1e). Emotion
concepts (functions of appraisal variables) are learned by finding a transformation between the
joint distribution over computed appraisals and the joint distribution over empirical emotion
judgements. An advantage of this approach is that the computational structure of social cognition
can be reverse-engineered directly from emotion judgements. Because the learned appraisal
structure is interpretable, the results can be compared with other emotion taxonomies. While it
did not need to be the case, the learned appraisal structure is unique for each emotion, suggesting
that these 20 emotions are conceptually distinct (figure 4).

A downside of this approach is that the learned structure is limited by the event context. A
context that does not induce reliable variance in the computed appraisals or in the empirical
emotion judgements will lead to poor identifiability. For instance, observers tended to judge
all events in the ‘Split or Steal’ game as surprising, leading the model to capture low overall
variance of surprise (figure 6b). Nonetheless, the model learned appropriate appraisal structure
for the reliable empirical patterns. Observers judged players to be the most surprised when
the players cooperated and their opponents defected (CD, figure 3d). Since simulated players
do not tend to cooperate when they expect their opponents to defect (figure 2), players show
large disadvantageous inequity aversion prediction errors when they are exploited. Thus, the
model learned that surprise is a function of PEbase

DIA (figure 4). Model comparison validates this: the
INVERSEPLANNINGLESION model, which does not represent why a player chose an action, cannot
capture surprise judgements at all (figure 6b).

Our work makes strong commitments to inverse planning as the mechanism by which
observers abstract Theory of Mind representations from situations, and to computed appraisals
as the cognitive basis of emotion understanding. There are many alternative ways to model the
relationship between situations and emotion predictions. It would be possible to learn direct
relationships between emotion judgements and situation features, like monetary reward and the
players’ decisions [153], but this would describe emotions in terms of the choices players made
and rewards they received without explaining why these features are psychologically relevant.
To study how emotion judgements relate to abstract representations of situations, it would be
possible to model emotion judgements based on empirical ratings of players’ appraisals, but this
would not address how observers generate the appraisal ratings from contextual information
[54,68]. Rather than relying on observers to generate appraisals from context, it would be possible
to define appraisals based directly on the event context without using inverse planning, but this
would not address how emotion predictions depend on a player’s intentions and motivations [4].
Finally, it would be possible to align a model’s appraisal computations with variables prescribed
by Appraisal Theories in order to predict emotions based on the emotion concepts defined in
terms of those appraisal variables [24]. However, this would limit the model to emotions that
have been previously defined, and require one to hand code functions that transform Theory of
Mind representations into prescribed appraisal variables, such as motivational relevance, goal
congruence, controllability, probability and novelty [75].

Our goal is to reverse-engineer the human intuitive theory of emotion. In the present
work, we focus on prediction, following the stance that forward causal reasoning is a core
cognitive capacity that enables explanation and planning [154,155]. By illustrating how inverse
planning over a Bayesian Theory of Mind can be extended to support a greater range of social
cognitive reasoning, our work outlines a path towards building formal models of everyday
social cognition. Our model of emotion prediction can be integrated with Bayesian models
of expression interpretation [65], to capture abductive inference (causal reasoning about what
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events someone previously experienced) [3] and contextualized emotion attribution (integrating
contextual and perceptual information to infer someone’s emotions) [4,156]. Emotion prediction
is also a critical input to planning social interactions. People deliberately plan and choose actions
in order to cause specific emotional reactions in their partners (with variable success). For a
model of human emotional intelligence to capture commonsense reasoning about others’ past,
present and future experiences, and human social interactions in general, the model must have
the capacity to predict others’ emotional reactions to hypothetical events [8,13,14,46,113,157].
In characterizing the sophisticated latent reasoning involved in predicting emotions, our work
suggests that even seemingly simple acts of emotion understanding involve abstract social
reasoning.

8 . Methods
This section describes how the COMPUTEDAPPRAISALS model learns a transformation from
computed appraisals to emotion predictions. The extended Methods are given in the electronic
supplementary materials, §S1.

(a) Learning the latent appraisal structure of emotion concepts
We learn a sparse transformation from the joint distribution over computed appraisal variables to
the joint distribution over emotion predictions. A transformation is described by a weights matrix
β, intercepts vector b and covariance matrix Σ . The likelihood is given by,

L(β, b,Σ ; E) =
∏
e∈E

P(e | β, b,Σ), (8.1)

where the matrix E is the set empirical emotion predictions for the GenericPlayers. When
predicting a player’s emotions, observers were given the decisions of both players in the game and
the pot size, such that each emotion vector e in this set is associated with a tuple of independent
variables that defines the outcome of the game: 〈a1, a2, pot〉.

The PUBLICGAME model generates a joint distribution over computed appraisals given the
outcome of a game: P(ψ | a1, a2, pot). The computed appraisal set Ψ comprises the ψ vectors
sampled from the joint posterior for every combination of independent variables. We learn a
transformation from computed appraisals (Ψ ) to emotions (E) by maximizing the probability of
observing the empirical emotion predictions under a uniformly weighted multivariate Gaussian
mixture. For an empirical emotion prediction vector, e, which is associated with a given outcome,
〈a1, a2, pot〉:

P(e | β, b,Σ) = E
P(ψ |a1,a2,pot)

[
P(e |ψ ,β, b,Σ)

]

= E
P(ψ |a1,a2,pot)

[
N (

e; μ = logit−1(k ·ψ ·β + b),Σ
)]

≈ 1
N

N∑
i

N (
e; μ = logit−1(k ·ψ i ·β + b), σ 2I

)
. (8.2)

We apply a logistic transformation to accommodate the [0, 1] bounds of the empirical emotion
predictions, with the steepness constant k set to 0.4. The Gaussian mixture is composed of
N samples (indexed by i) from the posterior distribution of computed appraisals for a given
game outcome. The Gaussian kernel uses a diagonal covariance matrix, formed from the
variance vector σ 2 and the identity matrix I. Note that while this enforces orthogonal covariance
between emotions in the kernel, the joint distribution over appraisals induces covariance between
emotions in the final mixture. Thus, we fit all 20 emotions jointly, and the β weights are
constrained by the covariance between simulated appraisals and by the empirical covariance
between emotions.
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(b) Regularization and cross-validation
We induce a sparse solution by placing a Laplace prior on the β weights:

(β, b,Σ)MAP = argmax
β,b,Σ

P(E | β, b,Σ) P(β)M, (8.3)

where P(E | β, b,Σ) is the likelihood from equation (8.1). The prior P(β) is given by
β ∼ Laplace(0, τ ), where τ is the scale hyperparameter, and adjusted by the number of empirical
observations (E is composed of M emotion vectors) so that the importance of the data relative to
the prior is constant for empirical datasets of different sizes. We estimate the Maximum a posteriori
(MAP) parameters via gradient descent with 
1 regularization on every β weight. This contrasts
with a common approach of seeking a sparse number of total predictors. Rather, each β weight is
regularized independently, which allows different emotion concepts to be defined by different
sets of computed appraisal variables. To improve feature selection and the interpretability of
β weights, each computed appraisal variable is scaled to have unit standard deviation prior to
model fitting.

To fit the scale of the Laplace prior (τ ), we performed gridsearch and K-fold cross-validation
on subsets of the SpecificPlayers. The emotion predictions used for analyses were generated for
SpecificPlayers that were held out of the fitting process. The optimization procedure is detailed
in the electronic supplementary methods §S1k, and described in brief here. For every considered
value of the hyperparameter, we generated a posterior distribution over computed appraisals
using the GenericPrior (described in the electronic supplementary methods §S1j) and fit the
transformation parameters to the empirical predictions of the GenericPlayers’ emotions. We
then generated computed appraisal distributions for 15 SpecificPlayers using the SpecificPriors
(described in the electronic supplementary methods §S1j(i)) and transformed these into emotion
predictions using the transformation parameters that were fit to the GenericPlayers. The Laplace
scale that provided the best generalization to the 15 SpecificPlayers in the cross-validation set was
used to predict emotions for the five SpecificPlayers that were held out for testing. This was iterated
to generate emotion predictions for all of the SpecificPlayers.

A learned transformation represents a likely point estimate of the posterior distribution over
the parameters. We ran the optimization many times using random initializations to estimate
expectations and confidence intervals of the β parameter weights.

Data accessibility. All behavioural data, models and analyses are available at: https://github.com/daeh/
computed-appraisals.
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