Abstract

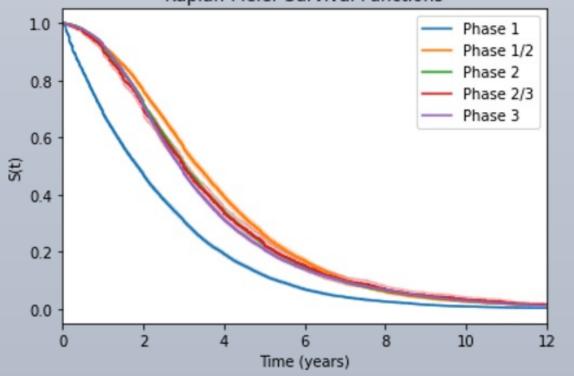
We apply survival analysis as well as machine learning models to predict the duration of clinical trials using the largest dataset so far constructed in this domain. Gradient boosting trees yield the most accurate predictions and we identify key factors that are most predictive of trial duration. This methodology may help clinical researchers optimize trial designs for expedited testing, and can also reduce the financial risk of drug development, which in turn will lower the cost of funding and increase the amount of capital allocated to this sector.

Introduction

Previous Works about Analysis of Clinical Trial Characteristics

Calculation of Historical Probability of Success (PoS) of Clinical Trial (Biostatistics, 2019)

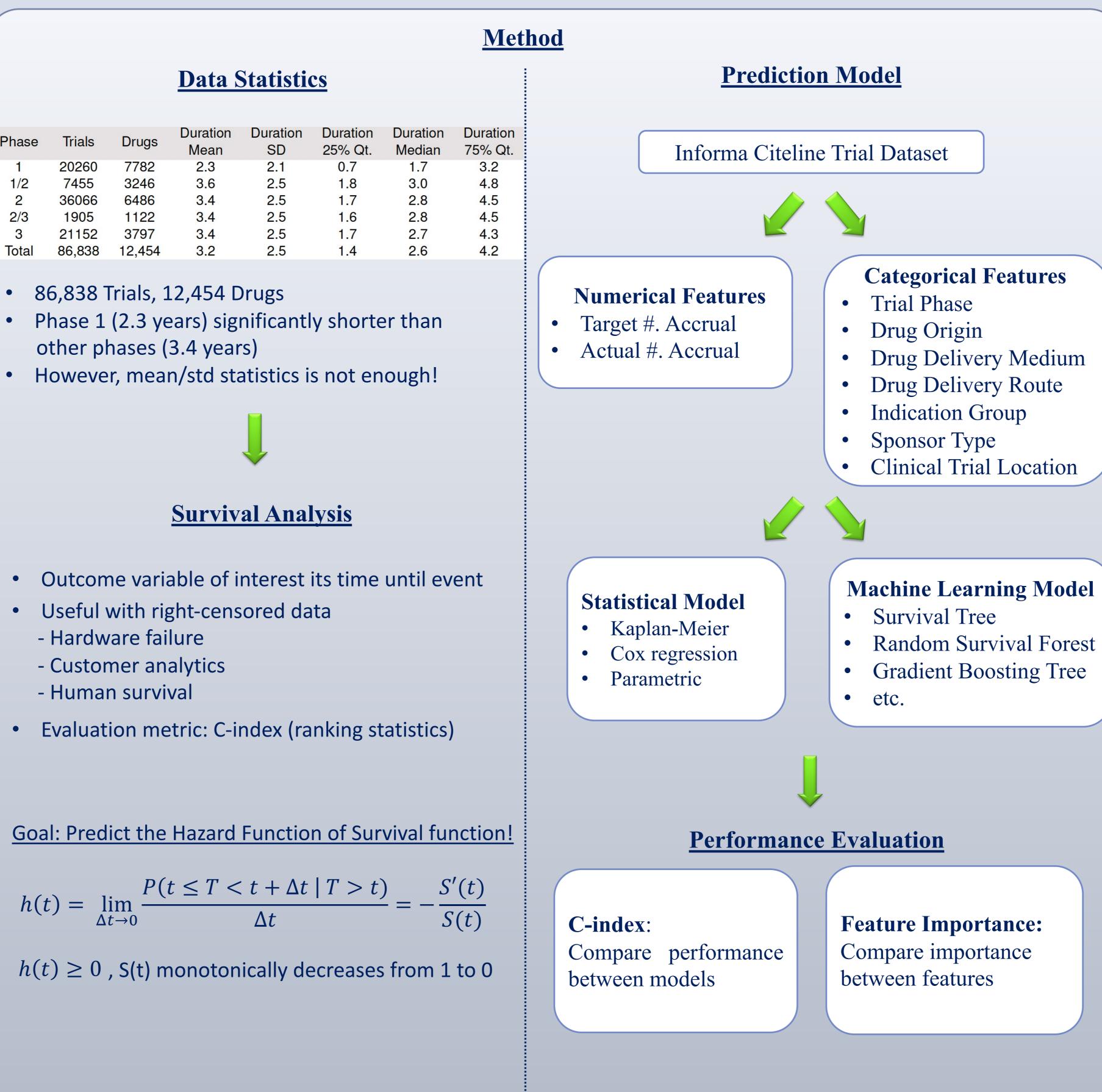
- Largest Dataset (Informa Citeline)
- 185,994 trials


Machine Learning with Statistical Imputation for Predicting Drug Approvals (HDSR, 2019)

- 140 features
- 15 disease groups
- 0.81 AUC

RESEARCH POSTER PRESENTATION DESIGN © 2015 WWW.PosterPresentations.com

Characteristic of the Prediction Model


- Right-Censored (Missing/Unreported trial duration)
- Still, we know the Trial Start Date
 - \rightarrow Survival Analysis rather than Regression Model Kaplan-Meier Survival Functions

Phase	Trials
1	2026
1/2	7455
2	3606
2/3	1905
3	2115
Total	86,83

Joonhyuk Cho, Qingyang Xu, Chi Heem Wong, and Andrew W. Lo

Laboratory for Financial Engineering (LFE), Computer Science and Artificial Intelligence Laboratory (CSAIL)

Results

<u>C-Index:</u>

Model	Data	Split 1	Split 2	Split 3	Split 4	Split 5	c-index	c-index
	Preprocess.	Spiit I	Spin 2	opin 5	Spin 4	Spin 5	(mean)	(SE)
Cox Regression	Original	0.686	0.687	0.681	0.680	0.683	0.683	0.001
Weibull AFT	Original	0.686	0.687	0.682	0.680	0.683	0.684	0.001
Survival Tree	Original	0.643	0.669	0.665	0.661	0.690	0.666	0.007
Survival Tree	WoE	0.679	0.673	0.674	0.679	0.674	0.676	0.001
Random Forest	Original	0.704	0.703	0.701	0.698	0.699	0.701	0.001
Random Forest	WoE	0.698	0.693	0.693	0.696	0.696	0.695	0.001
Gradient Boosting	Original	0.714	0.715	0.713	0.709	0.712	0.713	0.001
Gradient Boosting	WoE	0.705	0.702	0.702	0.704	0.702	0.703	0.001
DeepSurv	Original	0.710	0.705	0.703	0.701	0.704	0.704	0.001
DeepSurv	WoE	0.693	0.690	0.691	0.693	0.692	0.692	0.000
Neural-MTLR	Original	0.697	0.676	0.685	0.672	0.689	0.683	0.004
Neural-MTLR	WoE	0.668	0.674	0.628	0.674	0.666	0.662	0.008
Survival SVM	Original	0.682	0.683	0.677	0.676	0.679	0.679	0.001
Survival SVM	WoE	0.680	0.673	0.677	0.679	0.676	0.677	0.001

Gradient Boosting Survival Trees best C-index with 0.714

Feature Importance:

Indication Group> Sponsor Type > Trial Phase > Drug Characteristics (Medium, Delivery Route)

Conclusions

Developed a prediction model that can predict survival characteristic of each trial duration.

Next Step:

Incorporate analysis model of

- Probability of success
- Trial duration
- Financial modeling of the clinical trial

for precise estimation of financial Net Present Value of the clinical trial.

 \rightarrow Megafund which invest in multiple clinical trials