
Evelyne Ringoot, Julian Samaroo, Valentin Churavy, Alan Edelman

Parallel numerical linear algebra for large datasets

Communication: Out-of-core (Kabir et al 2017)

RQ sweep: top
panel in GPU
while iterating
over rows

LQ sweep: left
panel in GPU
while iterating
over columns

Calculations obtained using Nvidia GeForce RTX 3050 GPU (4GB), AMD Ryzen 7 5800H Radeon Graphics (16GB)

Out-of-Core (OOC): GPU algorithms speed up
calculations for large datasets but are limited
in memory. Out-of-Core algorithms take
advantage of the speed of GPUs and the
memory of CPUs.

Julia-native: The Julia-native implementation
allows to take advantage of all the features of
the Julia HPC language (e.g. support for half-
precision) and to make the algorithm available
to non-experts

Methods: QR algorithm for Parallel Out-
of-Core Block-Bidiagonalization

Algorithm: QR block-bidiagonalization (Haidar et al 2013)

RQ sweep LQ sweepMatrix Banded Diagonal

Objective: As big data becomes
widespread, we need adapted

parallel algorithms

Singular Value Decomposition: SVD is the
core algorithm used in data analysis as it
reveals low-rank approximations

E.g. machine learning, image processing

=

UnitaryUnitary Diagonal

Large datasets: Total amount of data in the
world is exploding

0

50

100

2012 2017 2022

Global data in ZB (Statista, 2022)

Scalable efficient algorithms
for large datasets

References

[1] Statista, “Volume of data/information created, captured,
copied, and consumed worldwide (…).” Statista chart, Sept.
2022.
[2] A. Haidar, J. Kurzak, and P. Luszczek, “An improved parallel
singular value algorithm and its implementation for multicore
hardware,” in SC ’13: Proc. ICHPCNSA, 2013
[3] K. Kabir, A. Haidar, S. Tomov, A. Bouteiller, and J. Dongarra,
“A framework for out of memory svd algorithms,” in Proc. ISC
HPC 2017, 2017, Springer-Verlag, 2017
[4] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia:
A fresh approach to numerical computing,” SIAM Review, 2017.

What’s next?

Split the parallel execution of QR on
the blocks over different GPUs, as
required communication is limited

Adapt for multi-GPU and HPC setting

Develop the stack of Julia
algorithms for large data numerical
linear algebra capabilities

Expand Julia-native algorithm stack

Maximize the GPU computing
capacity utilization and overlap
communication and calculation

Optimize prototype for latency

Block-bulge chasing: consecutive band-width reductions
of factor 2 on CPU to optimize number of flops

Block sizes: Significant QR speed-up on GPU only for
large block sizes (>2048x2048)

10-4

10-2

1

Matrix
size nxnCPU

GPU

QR and left-multiply calculation time (s)

4 128 4096

CPU faster GPU faster

An Out-of-Core GPU singular value decomposition
illustrates Julia capabilities for large datasets

CUDA

OOC
prototype

CUDA GPU
Memory limit

CPU

OOC can handle
matrices much

larger than CUDA

Matrix size nxn

16,000 (1GB)1,000 (4MB) 4,000 (60MB)

OOC out-
performs CPU

10

1

100

Time (s)

Singular values calculation time of QR-based algorithms
Successful prototype of out-
of-core GPU SVD

Algorithm is faster than CPU
algorithms, and handles
bigger matrices than CUDA

1

Wide target user base in Julia
Language

Syntax of Julia makes algorithm
available to non-experts alike

2

SVD implementation shows
merits applicable to other
linear algebra algorithms

Potential for more algorithms
for large datasets

3

	Slide 1

