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Parallel numerical linear algebra for large datasets

Communication: Out-of-core (Kabir et al 2017)

RQ sweep: top 
panel in GPU 
while iterating 
over rows

LQ sweep: left 
panel in GPU 
while iterating 
over columns

Calculations obtained using Nvidia GeForce RTX 3050 GPU (4GB), AMD Ryzen 7 5800H Radeon Graphics (16GB)

Out-of-Core (OOC): GPU algorithms speed up 
calculations for large datasets but are limited 
in memory. Out-of-Core algorithms take 
advantage of the speed of GPUs and the 
memory of CPUs.

Julia-native: The Julia-native implementation 
allows to take advantage of all the features of 
the Julia HPC language (e.g. support for half-
precision) and to make the algorithm available 
to non-experts

Methods: QR algorithm for Parallel Out-
of-Core Block-Bidiagonalization

Algorithm: QR block-bidiagonalization (Haidar et al 2013)
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Objective: As big data becomes 
widespread, we need adapted 

parallel algorithms

Singular Value Decomposition: SVD is the 
core algorithm used in data analysis as it 
reveals low-rank approximations

E.g. machine learning, image processing
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Large datasets: Total amount of data in the 
world is exploding
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Global data in ZB (Statista, 2022) 

Scalable efficient algorithms 
for large datasets
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What’s next?

Split the parallel execution of QR on 
the blocks over different GPUs, as 
required communication is limited

Adapt for multi-GPU and HPC setting

Develop the stack of Julia 
algorithms for large data numerical 
linear algebra capabilities

Expand Julia-native algorithm stack

Maximize the GPU computing 
capacity utilization and overlap 
communication and calculation

Optimize prototype for latency

Block-bulge chasing: consecutive band-width reductions 
of factor 2 on CPU to optimize number of flops

Block sizes: Significant QR speed-up on GPU only for
large block sizes (>2048x2048)
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An Out-of-Core GPU singular value decomposition 
illustrates Julia capabilities for large datasets
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matrices much 
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Successful prototype of out-
of-core GPU SVD

Algorithm is faster than CPU 
algorithms, and handles  
bigger matrices than CUDA
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Wide target user base in Julia 
Language

Syntax of Julia makes algorithm 
available to non-experts alike
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SVD implementation shows 
merits applicable to other 
linear algebra algorithms

Potential for more algorithms 
for large datasets
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