
RESEARCH ARTICLE NEUROSCIENCE OPEN ACCESS

Modulatory dynamics mark the transition between anesthetic
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Unconsciousness maintained by GABAergic anesthetics, such as propofol and sevoflu-
rane, is characterized by slow-delta oscillations (0.3 to 4 Hz) and alpha oscillations
(8 to 14 Hz) that are readily visible in the electroencephalogram. At higher doses, these
slow-delta–alpha (SDA) oscillations transition into burst suppression. This is a marker
of a state of profound brain inactivation during which isoelectric (flatline) periods
alternate with periods of the SDA patterns present at lower doses. While the SDA and
burst suppression patterns have been analyzed separately, the transition from one to
the other has not. Using state–space methods, we characterize the dynamic evolution
of brain activity from SDA to burst suppression and back during unconsciousness
maintained with propofol or sevoflurane in volunteer subjects and surgical patients.
We uncover two dynamical processes that continuously modulate the SDA oscillations:
alpha-wave amplitude and slow-wave frequency modulation. We present an alpha
modulation index and a slow modulation index which characterize how these processes
track the transition from SDA oscillations to burst suppression and back to SDA
oscillations as a function of increasing and decreasing anesthetic doses, respectively.
Our biophysical model reveals that these dynamics track the combined evolution of the
neurophysiological and metabolic effects of a GABAergic anesthetic on brain circuits.
Our characterization of the modulatory dynamics mediated by GABAergic anesthetics
offers insights into the mechanisms of these agents and strategies for monitoring and
precisely controlling the level of unconsciousness in patients under general anesthesia.

alpha-wave modulation | slow-wave modulation | oscillations | metabolism | burst suppression

Each anesthetic agent has a distinct neurophysiological signature that is readily visible
in the electroencephalogram (EEG) and local field potential, and relates directly to the
anesthetic’s mechanism of action (1, 2). For this reason, anesthetic EEG signatures can
be used to monitor the level of unconsciousness in patients receiving general anesthesia
for surgery. In adults, unconsciousness maintained by GABAergic anesthetics such as
propofol and sevoflurane is primarily characterized by slow-delta oscillations (0.3 to 4 Hz)
and alpha oscillations (8 to 14 Hz) (3). If the anesthetic dose is increased sufficiently,
these oscillations transform into burst suppression, a state of profound brain inactivation
during which quiescent or isoelectric (flatline) periods are interspersed between bursts of
activity (1, 4, 5).

Experimental and modeling studies have shown that the slow-delta–alpha oscillatory
state (SDA) is primarily a neurophysiological process (6). The alpha oscillations are
a highly coherent thalamus–prefrontal cortex rhythm (7), whereas the slow-delta
oscillations represent up–down states during which neural spiking activity is strongly
down-regulated across large parts of the cortex (8). The presence of SDA oscillations is
considered a marker of an adequate level of unconsciousness for surgery (3). Modeling
studies and the clinical use of burst suppression suggest that this state is a neurometabolic
phenomenon (4, 9). The quiescent periods disrupt the SDA oscillations when diminished
levels of ATP make it difficult for neurons to maintain their membrane potentials (4).
The presence of burst suppression is a more profound state of unconsciousness that
has been associated with postoperative cognitive disorders, particularly in the elderly
(10, 11). This is why for anesthetic management of unconsciousness during surgery it is
recommended to dose the anesthetics so as to avoid burst suppression (5). On the other
hand, the state of burst suppression is often maintained intentionally for several days or
more in intensive care unit patients placed in a medical coma to treat refractory status
epilepticus or intracranial hypertension (5, 9).

To date, it is known that modulation of the alpha oscillation amplitude by the phase
of the slow oscillation can be a marker of anesthetic state (3, 12). Moreover, alpha
suppression periods (13) and decreased alpha amplitude (14) may predict the subsequent
appearance of burst suppression. It has also been shown that the lengths of the suppression
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periods of burst suppression can be characterized as a function
of anesthetic dose and level of hypothermia, another process that
can produce burst suppression (15). While SDA oscillations and
burst suppression are produced by GABAergic anesthetics, the
transition from the former to the latter has not been studied.

The important advance we report is the characterization of
the transition from SDA to burst suppression and back to SDA
as a function, respectively, of increasing and decreasing doses
of propofol or sevoflurane in healthy volunteers and surgical
patients. We have identified a modulatory process of brain activity
that tracks continuously the transition from the SDA oscillations
to burst suppression and back to SDA oscillations. We have
found that this modulation occurs in parallel for the alpha
and slow oscillations. We develop an alpha modulation index
(AMI) and a slow modulation index (SMI) and illustrate their
application in EEG recordings from four categories of subjects or
patients. We also propose a biophysical model that characterizes
the modulation process and how it links the neurophysiological
process of the SDA dynamics and the neurometabolic process of
burst suppression. In addition to deciphering the link between
two robust signatures of anesthesia neurophysiology, our work
suggests markers for real-time tracking and control of level of
unconsciousness in patients receiving general anesthesia.

Results

Experimental Data. To study the relationship between SDA and
burst suppression, we analyzed EEG data from four different
groups of patients. Each received either propofol or sevoflurane
as the primary anesthetic to maintain unconsciousness. All data
were recorded under human studies protocols approved by the
Massachusetts General Hospital Human Research Committee.
These patients were 10 young (ages 18 to 35 y) healthy volunteers
who received increasing followed by decreasing doses of propofol
through computer-controlled infusions (3); 10 surgical patients
(ages 24 to 82 y) administered propofol by manual titration;
10 surgical patients administered propofol by manual titration
whose EEG showed diminished or absent alpha waves (ages 50
to 90 y); and 10 surgical patients (ages 53 to 72 y) administered
sevoflurane by manual titration. The EEG data were analyzed
using standard multitaper spectral analysis methods, bandpass
filtering, and state-space methods as described in Materials and
Methods. The results for all 40 subjects are given in SI Appendix,
Figs. S1–S40, and statistical summary of our results is given in
SI Appendix, Fig. S41 A–D.

We restricted the analysis of the modulations during the
transition from SDA to burst suppression and back to the
periods where the alpha and slow oscillations were present.
For the volunteer subjects, this period began following loss
of consciousness when the alpha oscillations appeared and
lasted until the start of emergence when the alpha oscillations
transitioned to beta oscillations, in accordance with the findings
in ref. 3. For the surgical patients, this period began following
induction when the alpha or slow oscillations appeared and
lasted until either anesthetic administration ended or the alpha
oscillations transitioned into beta oscillations and/or the slow-
delta oscillations dissipated, whichever event occurred first. The
periods not analyzed at the start and end of a session are marked
in gray in these figures.

Transition from Alpha Oscillations to Burst Suppression and
Back in a Healthy Volunteer Administered Propofol. As pre-
viously reported from this healthy volunteer experiment (3),
with changes in the propofol target effect-site concentration

A

B

Fig. 1. Evolution of EEG dynamics during propofol-mediated unconscious-
ness. (A) Top. Graph shows the target propofol effect-site concentration
for a volunteer subject receiving a computer-controlled propofol infusion.
The propofol infusion rate is increased in a stepwise manner to achieve 5
increasing target effect-site concentrations then the infusion is turned off.
Middle. Temporal traces of the correct response probability for verbal cues
(blue) and sound clicks (orange) to infer loss (LoC) and recovery (RoC) of
consciousness. Bottom. EEG Spectrogram. (B) Four-second raw EEG segments
recorded at the timepoints indicated in (A) showing amplitude modulation.
The high-frequency variations are predominantly alpha oscillations (8 to
14 Hz), whereas the low-frequency variations are slow-delta oscillations (0.3
to 4 Hz). The a–g progression shows the transition during unconsciousness
from slow-delta and alpha oscillations into burst suppression (d) and back.

(Fig. 1 A, Upper), it is possible to track changes in behavioral
response (Fig. 1 A, Middle) and corresponding changes in the
spectral content of the EEG (Fig. 1 A, Lower). The first finding
we report is a modulation of the alpha oscillation amplitude in
which the raw EEG transitions from having high-amplitude alpha
oscillations to low-amplitude alpha oscillations. This modulation
is present as soon as the alpha oscillations appear shortly after loss
of consciousness (Fig. 1 B, a and b). With increasing propofol
target effect-site concentration, the periods of high-amplitude
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alpha oscillations decrease, and the periods of low-amplitude
alpha oscillations increase (Fig. 1 B, c) until the raw EEG signal
becomes burst suppression (Fig. 1 B, d ). As the target propofol
effect-site concentration declines (Fig. 1A), the periods of low-
amplitude alpha oscillations shorten and the periods of high-
amplitude alpha oscillations lengthen (Fig. 1 B, e–g). Hence,
in these young healthy volunteers receiving propofol, the alpha
amplitude modulation tracks the transition from the appearance
of alpha oscillations to burst suppression and back to alpha
oscillations as a function of increasing and decreasing propofol
doses.

The alpha amplitude modulation is more apparent when the
EEG is filtered to isolate the alpha band (Fig. 2A). We further
enhanced the presentation of the modulation by defining the
periods of high-amplitude alpha oscillations as up-states and the
periods of low-amplitude alpha oscillations as down-states (Fig.
2 B and C ) (See Materials and Methods for a complete definition
of the alpha up-states and the alpha down-states). When the data
in Fig. 1 are filtered to isolate the alpha band, we see that as
the propofol target effect-site concentration increases, the up-
state durations decrease and the down-state durations increase

(Fig. 2 B, a–d ). As the propofol target effect-site concentration
decreases, the dynamics reverse (Fig. 2 B, e and f ). As illustrated
with the raw EEG signal, burst suppression (Fig. 2 B, d ) is a point
on the alpha amplitude modulation continuum during which
alpha down-states are appreciably longer than the up-states. The
alpha down-states correspond to the suppression periods.

Our biophysical model, described later, offers an explanation
for the changes in these dynamics of the alpha oscillations.

Transition from Slow-Delta Oscillations to Burst Suppression
and Back in a Healthy Volunteer Administered Propofol. In
addition to alpha-wave modulation, the second finding we report
is the presence of a slow-delta oscillation (0.3 to 4 Hz) frequency
modulation which is readily visible in the raw EEG recording
(Fig. 1B) and in the slow-delta band extracted from the raw
EEG signal by bandpass filtering (Fig. 2 A, D, and E). The
modulation is apparent when we focus on the duration of the
slow cycles and the duration of their down periods (Fig. 2E).
(See Materials and Methods for definitions of the slow cycle and
slow down-state durations). At low propofol target effect-site
concentrations, isolated large amplitude (up and down) cycles

A

B

C E

D

Fig. 2. Alpha- and slow-delta-wave modulation continuously track the transition from SDA to burst suppression and back to SDA during propofol-mediated
unconsciousness. (A) Raw EEG signal (grey) recorded during propofol-mediated unconsciousness shown along with its alpha oscillation component (red), its
slow-delta oscillation component (blue), and the sum of the two (purple). (B) EEG traces showing the modulation of the filtered alpha oscillations extracted
at the timepoints indicated in Fig. 1 A and B, a–g. The alpha-wave modulation continuously tracks the transition from SDA to burst suppression and back to
SDA during propofol-mediated unconsciousness. The first 4 s correspond to the traces in Fig. 1B. (C) Trace illustrating alpha-wave up-state durations (blue)
and down-state durations (orange) and their computation through thresholding. (D) Similar to (B) but applied to the filtered slow-delta oscillations. (E) Trace
illustrating slow-wave cycle durations (green) and down-state durations (purple) and their computation through crossings (green dashed line) and thresholding
(purple dashed line), respectively.
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A

B

C

D

E

F

Fig. 3. EEG dynamics of a volunteer subject under propofol-mediated unconsciousness show modulation progression from SDA to burst suppression and back
to SDA. (A) (Top) Propofol target effect-site concentration (purple) and correct response probability curves for cues (red) as in Fig. 1A. The red arrows indicate
loss (LoC) and recovery (RoC) of consciousness. (Bottom) EEG spectrogram. (B) Time series plots showing the alpha up-state (blue) and down-state (orange)
durations. The smooth traces are Kalman filter estimates of the corresponding mean state durations. (C) Time course of the AMI. See Text for definition. (D)
Time series plots showing the slow-oscillation cycle durations (green) and the slow-oscillation down-state durations (purple). The smooth traces are Kalman
filter estimates of the corresponding mean state durations. (E) Time course of the SMI. See Text for definition. (F ) Time course of the BSP.
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begin to appear in the slow waves (Fig. 2D). Their durations are
distinctly larger than the initial slow-wave fluctuations. These
cycles initially appear sparsely in the slow-wave fluctuations. As
the propofol target effect-site concentration increases, they occur
more frequently (Fig. 2 D, a–d ). The occurrence of these large
cycles increases until they coalesce: Their up-states transition to
the burst periods of burst suppression, whereas their troughs
or down-states transition to the suppression periods of burst
suppression (Fig. 2 D and E). The progression of these dynamics
also reverses (Fig. 2 D, e–g), as the propofol target effect-site
concentration decreases.

As with alpha-wave modulation, our biophysical model ex-
plains the dynamics of slow-wave modulation.

Alpha- and Slow-Wave Modulation Track Propofol Effect Site
Concentration during the Transition from SDA to Burst Sup-
pression and Back. To track quantitatively the EEG dynamics
in the alpha band during the transition from SDA to burst
suppression and back to SDA, we derived an AMI (Materials
and Methods). AMI is a real-time measure derived from a ratio
between the duration of the alpha up-states and down-states
(Fig. 2 B and C ). We tested it on the EEG recordings from
all 10 volunteer subjects who underwent propofol-mediated loss
and recovery of consciousness. An example is given in Fig. 3.
We found that the duration of an alpha up-state decreases as the
propofol target effect-site concentration increases, up to a point,
after which the duration of an alpha down-state begins to increase
(Fig. 3 A and B). We also found that AMI mirrored the propofol
target effect-site concentration (Fig. 3 A and C and SI Appendix,
Table S2).

We derived a SMI to track the dynamics of the slow-wave
frequency modulation during the transition from SDA to burst
suppression and back to SDA (Materials and Methods). SMI is
a real-time measure derived from a ratio between the frequency
of slow-wave cycles and duration of the slow-wave down-state
(Fig. 3 B and C ). We found that the number of slow-wave
cycles per unit time decreased as the propofol targets effect-
site concentration increased, up to a point where the slow-wave
down-states became more prominent and began to lengthen
(Fig. 3D). Like AMI (Fig. 3 A and C ), SMI also mirrored
the propofol effect-site concentration (Fig. 3 A and E and SI
Appendix, Table S2).

For validation, we computed the burst suppression probability
(BSP) which tracks across time the instantaneous probability that
a patient is in burst suppression (15) (Materials andMethods). We
found that both AMI and SMI reflect the information present
in BSP which is designed to track high effect-site concentrations
(Fig. 3 C , E , and F ). That is primarily because the suppressions
that the BSP detects coincide with the down-states in the alpha
waves and down-states in the slow waves (Materials andMethods).
More importantly, AMI and SMI track modulatory dynamics
that are present at lower propofol target effect-site concentrations.
Here, BSP is uninformative (Fig. 3 C , E , and F ).

Five of the 10 subjects in our volunteer cohort (cases 1, 3,
6, 7, and 9; see SI Appendix, Figs. S1, S3, S6, S7, and S9)
undergo a transition from SDA to burst suppression and back
to SDA. AMI and SMI tracked these transitions. The remaining
five volunteer subjects (cases 2, 4, 5, 8, and 10; see SI Appendix,
Figs. S2, S4, S5, S8, and S10) stayed in SDA. This demonstrates
that AMI and SMI track not only the transitions between SDA
and burst suppression but also the dynamics within the SDA
stages of propofol-mediated unconsciousness. AMI and SMI
track different oscillatory bands and are computed differently

(Fig. 2 C and E). However, because both indices track the
transitions between SDA and burst suppression (SI Appendix, Fig.
S41A), this suggests that the alpha- and slow-wave modulations
are likely driven by a common process. Our biophysical model
illustrates that this common process is likely due to the combined
neurophysiological and metabolic effects of propofol.

Alpha- and Slow-Wave Modulation are Present in Surgical
Patients under Propofol-Mediated Unconsciousness. Anes-
thetic administration to the volunteer subjects used only propofol
targeted to achieve specific effect-site concentrations in order
to track loss and recovery of consciousness. In surgical cases,
the situation is different as multiple agents are administered
simultaneously (e.g., hypnotics, analgesics and muscle relaxants)
to achieve the state of general anesthesia (16) and not simply
unconsciousness (Fig. 4). Nevertheless, the EEG dynamics are
governed predominantly by the primary hypnotic agent. We
found that the alpha- and slow-wave modulation dynamics are
also present in surgical cases during which propofol is the primary
hypnotic agent (Fig. 4A–E). In these cases, AMI and SMI tracked
the transition from SDA to burst suppression and back (Fig. 4 B–
E). AMI and SMI track the modulatory dynamics identified by
the BSP when burst suppression is present as well as the alpha-
wave amplitude and slow-wave frequency modulation present
at propofol doses lower than those at which burst suppression
occurs (Fig. 4F ).

Four of the ten patients in our surgical cohort (cases 11, 15,
18, and 20; see SI Appendix, Figs. S11, S15, S18, and S20)
underwent the transition from SDA to burst suppression and
back to SDA during surgery. Both AMI and SMI tracked these
transitions. The other six patients (cases 12–14, 16, 17, and 19;
see SI Appendix, Figs. S12–S14, S16, S17, and S19) remained in
SDA and both the AMI and SMI tracked their dynamics as well.

Slow-Wave Modulation is Present in Surgical Patients with
Weakened, Absent, or Dissipating Alpha Waves under Propo-
fol-Mediated Unconsciousness. While a key signature of
propofol- and sevoflurane-mediated unconsciousness is the pres-
ence of strong alpha waves, these oscillations are often weak,
dissipating or absent in elderly patients (14). For the elderly, this
limits the utility of an index that tracks the transition from SDA to
burst suppression by monitoring alpha wave modulation. In this
case, the SMI remains a reliable metric for tracking modulatory
dynamics during propofol-mediated unconsciousness. Fig. 5
shows the EEG recorded from a 70-y-old man undergoing a
robotic laparoscopic prostatectomy. At approximately 40 min
after induction of general anesthesia, his alpha oscillations
dissipate (Fig. 5A). This led to a detection of very long alpha
down-states (Fig. 5B) and a drastic decrease in the AMI (Fig. 5C ).
These changes in the AMI suggest an early increase in the effect-
site concentration. However, the progression of the slow-wave
activity is preserved (Fig. 5D) and SMI tracked the progression
from SDA to burst suppression and back as well (Fig. 5E). If AMI
is recalibrated after the loss of alpha power—which is possible by
our implementation (Materials and Methods)—we believe that
the alpha waves would still offer a suitable tracking index. BSP,
which detects broadband suppression, indicates that there is no
burst suppression in the first half of the surgical session despite
the weakening of alpha oscillations (Fig. 5F ).

We analyzed the EEG recordings of 10 surgical patients in
whom unconsciousness during general anesthesia was maintained
with propofol who showed either weak, dissipating, or absent
alpha oscillations. Five of these patients (cases 22–24, 27, and 29;
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A

B

C

D

E

F

Fig. 4. EEG dynamics of a 44-y-old woman who underwent a laparoscopic
cholecystectomy under propofol-mediated unconsciousness show modula-
tion progression from SDA to burst suppression and back to SDA. (A) Top.
Graph showing the propofol administration scheme, combining boluses (red)
and continuous infusion (orange). Bottom. EEG spectrogram. The dark-blue
band is a period of missing EEG data. (B) Time series plots showing the alpha
up-state (blue) and down-state (orange) durations. The smooth traces are
Kalman filter estimates of the corresponding mean state durations. (C) Time
course of the AMI. See Text for definition. (D) Time series plots showing the
slow-oscillation cycle durations (green) and the slow-oscillation down-state
durations (purple). The smooth traces are Kalman filter estimates of the
corresponding mean state durations. (E) Time course of the SMI. See Text for
definition. (F ) Time course of the BSP.

see SI Appendix, Figs. S22–S24, S27, and S29) remained in SDA
without going into burst suppression, as indicated by their raw
EEG traces and their near zero BSP values. In these cases, we
often observed sudden weakening or dissipation of the alpha
oscillations with concomitant AMI drops at those timepoints
suggesting a higher effect-site concentration consistent with
burst suppression, while none is present. However, SMI remains
at levels comparable to those prior to alpha dissipation. The
remaining five patients (cases 21, 25, 26, 28, and 30; see SI
Appendix, Figs. S21, S25, S26, and S30) show light periods of
burst suppression, preceded by alpha oscillation weakening and
an early decrease of AMI relative to SMI. An overall decrease

in AMI compared to SMI when alpha waves are weak can be
observed when comparing SI Appendix, Fig. S41C to SI Appendix,
Fig. S41B.

Alpha- and Slow-Wave Modulation are Present in Surgical
Patients under Sevoflurane-Mediated Unconsciousness. We
predict that the modulatory dynamics observed for propofol
would be present for other GABAergic anesthetics, as all the
GABAergic anesthetics have similar spectral patterns. Therefore,
we analyzed the EEG recordings of 10 surgical patients receiving
general anesthesia in whom unconsciousness was maintained with
sevoflurane (Fig. 6 A–F ).

A

B

C

D

E

F

Fig. 5. EEG dynamics of a 70-y-old man who underwent a robotic la-
paroscopic prostatectomy under propofol-mediated unconsciousness show
dissipation of alpha oscillations. (A) Top. Graph shows the manual propofol
infusion scheme, with boluses (red) and continuous infusion (orange).Bottom.
EEG spectrogram shows a loss of alpha power (red arrow) approximately 30
min after the start of the recording. (B) Time series plots showing the alpha
up-state (blue) and down-state (orange) durations. The smooth traces are
Kalman filter estimates of the corresponding mean state durations. (C) Time
course of the AMI. See Text for definition. (D) Time series plots showing the
slow-oscillation cycle durations (green) and the slow-oscillation down-state
durations (purple). The smooth traces are Kalman filter estimates of the
corresponding mean state durations. (E) Time course of the SMI. See Text for
definition. (F ) Time course of the BSP.
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Six of these patients (cases 31–33, 37, 39, and 40; see SI
Appendix, Figs. S31–S33, S37, S39, and S40) transitioned from
SDA into burst suppression and back to SDA. AMI and SMI
tracked these transitions. In two of these six cases (cases 31 and
40; see SI Appendix, Figs. S31 and S40), the appearance of burst
suppression coincides with the administration of propofol boluses
indicating a sudden increase of GABAergic anesthetic effect-site
concentration. In the other cases (cases 32, 33, 37, and 39; see
SI Appendix, Figs. S32, S33, S37, and S39), the transition into
burst suppression occurs on a high sevoflurane dose, and hence, a
high effect-site concentration. This shows, as expected, that this
transition does occur when sevoflurane is the primary hypnotic.
The remaining four patients (cases 34–36 and 38; see SI Appendix,

A

B

C

D

E

F

Fig. 6. EEG dynamics of a 54-y-old man who underwent a photoselective
vaporization of the prostate under sevoflurane-mediated unconsciousness.
(A) Top. Graph shows the time course of the end-tidal sevoflurane concen-
tration (blue), following a propofol bolus (red) administered for induction.
Bottom. Spectrogram of the raw EEG signal. (B) Time series plots showing the
alpha up-state (blue) and down-state (orange) durations. The smooth traces
are Kalman filter estimates of the corresponding mean state durations. (C)
Time course of the AMI. See Text for definition. (D) Time series plots showing
the slow-oscillation cycle durations (green) and the slow-oscillation down-
state durations (purple). The smooth traces are Kalman filter estimates of
the corresponding mean state durations. (E) Time course of the SMI. See Text
for definition. (F ) Time course of the BSP.

Figs. S43–S36 and S38) remained in SDA, and AMI and SMI
tracked these dynamics.

The Progression of Alpha- and Slow-Wave Modulation Signals a
Transition from a Neurophysiological to a Metabolic Anesthetic
Effect in the Brain. We build on the biophysical models for
alpha oscillations (6, 17), slow-delta oscillations (18), and burst
suppression (4) to offer a neural circuit description of how alpha-
wave amplitude and slow-wave frequency modulation define
the transition from SDA to burst suppression as a function of
increasing effect site concentration of a GABAergic anesthetic.
Our model is a cortical network consisting of excitatory pyramidal
neurons and inhibitory interneurons (SI Appendix, Fig. S42)
(Materials and Methods). Although directly combining the exist-
ing biophysical models will produce SDA and burst suppression,
this configuration alone is insufficient to produce alpha-wave
amplitude and slow-wave frequency modulation. The key insight
that our analysis uncovered is that the duration of a slow-wave
cycle changes throughout the transition from SDA to burst
suppression. If the slow oscillation is dynamically constructed
by an interaction of different GABAergic-anesthetic-dependent
mechanisms, particularly during SDA, then the modulation
processes emerge from the augmented model.

For the purpose of presentation, we describe the formation
of the modulation processes in three stages. In the first stage,
the effect-site concentration of the GABAergic anesthetic reaches
a level sufficient to produce alpha and slow-delta oscillations
(Fig. 7, a). Its widespread actions also facilitate global inhibition
of cortical activity, triggered by a momentary increase in cortical
activity and enabled potentially through cortical–thalamic in-
teractions. The global inhibition hyperpolarizes the membranes
of the excitatory neurons which manifests as increasingly larger
troughs in the slow oscillations and interruption of alpha
oscillations by interrupting neuronal spiking activity. The first
signs of alpha and slow-wave modulation appear in the EEG (Fig.
7, a). In the second stage, as the effect-site concentration of the
GABAergic anesthetic continues to increase, global inhibition
is further facilitated. As it is triggered more frequently, large
slow-wave cycles and alpha oscillation disruption become more
frequent. These effects appear as a more profound modulation
with increasing slow-wave cycle duration and shorter alpha
oscillation up-states (Fig. 7, b–d ). At the same time, ATP
production starts to decline as the GABAergic anesthetic begins
to disrupt oxidative phosphorylation in the mitochondrial mem-
branes of the neurons (Fig. 7, c and d ). In the third stage, ATP
production is severely impaired so that neuronal spiking activity
readily depletes ATP levels thereby forcing inward rectifier ATP-
dependent potassium channels to open (SI Appendix, Fig. S42).
The opening of these channels hyperpolarizes the neurons and
enhances the suppression periods observed in both the slow
and alpha oscillations. As the GABAergic anesthetic effect-
site concentration increases further, the recovery of adequate
ATP levels slows more leading to longer suppression periods,
which manifest as longer alpha- and slow-wave down-states
(Fig. 7, d–g) and eventually, burst suppression (Fig. 7, f and g).
The biophysical model output (Fig. 7) captures well the dynamics
present in the EEG signals (Fig. 2).

Through our data and modeling analyses, we find that burst
suppression is the extreme of alpha-wave amplitude modulation
and slow-frequency modulation (Figs. 1B, d ; 1D, d ; and 7, f and
g). However, impaired mitochondrial function (the metabolic
effect) need not begin with large doses of the GABAergic
anesthetic that are often associated with burst suppression. Our
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a

b

c

d

e

f

g

Fig. 7. Biophysical model characterizing the progression from SDA to burst suppression. EEG traces bandpassed filtered in the alpha oscillation range (red)
and in the slow-delta oscillation range (blue) obtained by simulating our network model at increasing propofol target effect-site concentrations and neural
metabolic effects. A blue bar indicates an alpha-wave up-state and an orange bar indicates alpha-wave down-state. A green square indicates the onset of a
slow oscillation cycle, and a purple bar indicates a down-state. The changes in parameters to go from a to g are given in Table 1 in Materials and Methods.

modeling analysis suggests that the metabolic effect is present
when the alpha-wave down-states and the slow-wave troughs
begin to lengthen (Fig. 7, d and e). These events occur well in
advance of the appearance of burst suppression in the EEG. As
ATP production becomes more impaired, the metabolic effect
manifests prominently as the transition into burst suppression.

Our cortical network produces SDA when there is sufficient
binding of the GABAergic anesthetic to the GABA receptors. As
the effect-site concentration increases, the slow-delta and alpha
oscillations undergo, respectively, frequency- and amplitude-
modulation, which coalesce into burst suppression due to
the combined neurophysiologic and metabolic effects of the
anesthetic (Fig. 7).

Discussion

Alpha-Wave and Slow-Wave Modulation Continuously Track
the Transition from SDA Oscillations to Burst Suppression
and Back to SDA Oscillations. EEG SDA oscillations and burst
suppression are established markers of unconsciousness me-
diated by GABAergic anesthetics. Burst suppression indicates
a more profound state of brain inactivation. We discovered
that alpha-wave amplitude modulation and slow-wave frequency
modulation track the transition from SDA oscillations to burst
suppression and the transition from burst suppression to SDA
oscillations as a function of an increasing and decreasing propofol
effect site concentrations, respectively.

In our up-down state analysis of the alpha and slow mod-
ulations, we discovered two components for both processes.
The transition from SDA to burst suppression is marked by
shortening of the alpha up-states followed by lengthening of the
alpha down-states. During the same transition, the wide slow
cycles first become more frequent. Next, the troughs of these
cycles lengthen and flatten into long suppression intervals. Our
biophysical model suggests that the first component of the two
modulatory processes is a neurophysiological effect, whereas the
second component is most likely a metabolic effect.

We derived two indices, AMI and SMI, to track, respec-
tively, the alpha and slow modulations during the SDA-burst

suppression-SDA transitions. The indices tracked these dy-
namics in human volunteers receiving propofol and in actual
surgical patients receiving either propofol or sevoflurane as the
GABAergic hypnotic agent during general anesthesia. The SMI
tracked the changes in dynamics even in the absence or loss
of the alpha oscillations, states that commonly occur in elderly
patients. Because both indices track the SDA-burst suppression-
SDA transition, we infer that both track changes in level of
unconsciousness. Our biophysical model supports this inference
as it shows that the modulatory processes which these indices
track are generated by the combined neurophysiological and
metabolic effects of GABAergic anesthetics on neural circuits.
An important caveat is that none of the volunteers or patients
received ketamine, an agent known to alter the EEG signatures
of GABAergic anesthetics (19, 20).

Prior Studies of Alpha- and Slow-Wave Modulation. Schroeder
and Barr (21) studied EEG alpha oscillation modulation in a
nonanesthesia context and used the term amplitude modulation
index in their analyses. Because we studied the same dynamics,
albeit with different algorithms, we used the same term. Shao
and colleagues (14) established a correlation between low frontal
alpha power and the propensity to observe burst suppression
during propofol- and sevoflurane-mediated unconsciousness in
the elderly. They proposed decreased brain energy stores in
elderly patients made worse by anesthetic inhibition of brainstem
excitatory neuromodulation as a possible mechanism for this
correlation. Cartailler and colleagues (13) showed that alpha
suppression during the early stages of propofol-mediated uncon-
sciousness was a predictor of the subsequent appearance of burst
suppression. Our data analysis and biophysical modeling suggest
that low-amplitude alpha oscillations and early evidence of alpha
suppression could be due to an earlier onset of the metabolic
effects of the GABAergic anesthetic.

Modulation of the alpha oscillation by the slow oscillation has
been reported in two forms for propofol: trough-max and peak-
max (3, 12, 22). In the former, identified as a marker of both
loss and recovery of consciousness, the amplitude of the alpha
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oscillation is maximal at the trough of the slow oscillation. In the
latter, identified as a marker of unconsciousness, the amplitude of
the alpha oscillation is maximal at the peak of the slow oscillation.
That is, during peak-max, the alpha up-states are reported to co-
localize with the up-cycle in the slow oscillation. During the
immediate pre-burst suppression and burst suppression states,
we observed this co-localization (SI Appendix, Fig. S43 A and B).
However, in the transition to burst suppression, we found that
the slow oscillation troughs changed with increasing anesthetic
dose and did not always signify a down-state for the alpha
oscillations (Fig. 7). Our biophysical modeling shows that the
slow oscillation shape and period are formed dynamically as a
function of increasing GABAergic anesthetic dose, due to its
combined neurophysiological and metabolic effects (Fig. 7). The
metabolic effects lengthen both the alpha and the slow oscillation
down-states. The two down-states eventually overlap and devolve
into suppression periods. Our model suggests that suppression
of spiking activity should accompany the suppression periods.
Indeed, in our nonhuman primate studies of propofol-mediated
unconsciousness, we observed suppression of spiking activity
during the suppression periods in the local field potentials (8).

Mechanisms for the Combined Neurophysiological and
Metabolic Effects of GABAergic Anesthetics. Our data analyses
and modeling link EEG alpha- and slow-wave modulation to neu-
rophysiological and metabolic effects of GABAergic anesthetics.
The presence of the slow, delta and alpha oscillations represents
principally a neurophysiological effect, whereas progression into
the alpha and slow modulations represents the neurophysiological
effect and the progression of the metabolic effect. Burst sup-
pression is the extreme presence of the modulatory effect. The
modulations suggest that the metabolic effects of the GABAergic
anesthetics begin well in advance of burst suppression. However,
it is not possible to determine exactly when the metabolic effects
emerge using only our data, without additional experiments. Our
biophysical model builds on the alpha oscillation model proposed
by Ching and colleagues (6), the slow oscillation model proposed
by Soplata and colleagues (18), and the burst suppression model
designed by Ching and colleagues (4).

There is substantial experimental evidence to support possible
mechanisms for the metabolic effects we propose. Positron
emission tomography studies in humans show that administering
propofol decreases CMRO2 and cerebral blood flow (23, 24).
Findings from in vitro studies show that GABAergic anesthetics
slow ATP production by abolishing mitochondrial membrane
potentials (25) and, thereby, blocking the conversion of ADP to
ATP. In addition, experiments have shown that GABAergic anes-
thetics act on mitochondrial respiratory enzymes (26–28) leading
to a decrease in oxygen consumption and inducing a switch to
glycolysis. As noted above, Shao and colleagues (14) proposed a
circuit mechanism for the higher propensity of burst suppression
in elderly patients. Their hypothesis could be extended to explain
in part the contributions of metabolic effects to the modulatory
dynamics in older patients. These possible mechanisms are not
mutually exclusive and can certainly act in concert.

Implications of AMI and SMI for Monitoring Unconsciousness
and Brain Metabolic State. AMI and SMI can be computed and
displayed in real time as measures of unconsciousness for a patient
in whom a GABAergic anesthetic is the primary agent maintain-
ing unconsciousness. These indices contain the information in
the BSP as a special case. Hence, this suggests that AMI and SMI
could be used clinically to monitor unconscious during general

anesthesia. As real time markers of unconsciousness, they could
also be used to implement a system for closed-loop control of
anesthetic state in either the operating room or in the intensive
care unit. We restate that we propose these applications of AMI
and SMI with the proviso that ketamine is not being coadminis-
tered to help maintain general anesthesia or sedation (19, 20).

In future work, we will test experimentally the metabolic
hypothesis proposed by our biophysical model by measur-
ing simultaneously neurophysiological responses and metabolic
responses during controlled upward and downward titrations of
propofol or another GABAergic anesthetic. If the relationship
between the indices, the neurophysiological and the metabolic
responses, is correct then the indices could also be used to
track the metabolic state of a patient in the operating room
or in the intensive care unit. A more accurate characterization
of brain state could lead to more judicious anesthetic dosing
and a possible reduction in postoperative cognitive disorders
(29–31). It may also enable more precise anesthetic titration to
maintain a desired level of neuroprotection for patients placed in
a medical coma to treat status epilepticus or to control intracranial
hypertension. Our characterization of the modulatory dynamics
mediated by GABAergic anesthetics during transitions between
states of unconsciousness offers important mechanistic insights
that could be readily applied in clinical care.

Materials and Methods

Data Acquisition. All data collectionand experimental protocols were approved
by the Mass General Brigham Human Research Committee (Institutional Review
Board). For the propofol volunteer study, all subjects provided informed consent.
For the surgical patient studies, there was no data collection specific consent as
the EEG recordings, physiological data, and anesthetic administration data were
collected as part of standard care and deidentified.
Volunteer subjects under propofol-mediated unconsciousness. The propofol
volunteer dataset—utilized in ref. 3—consists of EEG recordings from 10 healthy
volunteers between the ages 18 and 36, American Society of Anesthesiology
Physical Status I, and with Mallampati Class I airway anatomy. Safety measures
and clinical details are provided in ref. 3.

Propofol was administered via computer-controlled infusion to achieve target
effect-site concentrations of 0, 1, 2, 3, 4, and 5 μg/mL, based on a three-
compartment pharmacokinetic model of propofol (32). Each target concentration
was held for 14 min. Following ref. 32, clearance and volume parameters of
the model were adjusted to each volunteer based on their age, sex, height, and
weight. The dynamics of other compartments were assumed to be unaffected by
the addition of an effect site compartment, with a balanced one-way exchange
rate and clearance from the system estimated from ref. 33. In some cases, target
effect-site concentrations were decreased in a stepwise fashion, so that both
inductionandemergencefromunconsciousnessweregradual.Unconsciousness
was determined by the response of a subject to auditory stimuli (clicks or
words), which were presented every 4 s. Details of the auditory stimuli are
provided in ref. 3. Unresponsiveness to the auditory stimuli was interpreted as
unconsciousness. Details of computing the probability of response to auditory
stimuli and identifying loss of consciousness and return of consciousness are
provided in ref. 3.

Whole head EEG data were recorded using a 64-channel BrainVision MRI Plus
system (Brain Products) with a sampling rate of 5,000 Hz, bandwidth 0.016 to
1,000 Hz, and resolution 0.5 μV least significant bit. The Fp1 channel was used
for all further analysis. Subjects were instructed to close their eyes throughout
the experiment to avoid eye-blink artifacts in the EEG.
Surgical patients under propofol-mediated unconsciousness, with strong
alpha waves. This dataset was created from a database of real-time EEG
recordings of 140 patients who underwent general anesthesia or monitored
anesthesia care between August 1, 2020 and March 1, 2022. Frontal EEG data
were recorded using the SedLine brain function monitor (Masimo Corporation,
Irvine, CA) with a sampling frequency of 178 Hz. The Fp2 channel was used for
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further analysis. A research assistant annotated accurate time points of all drug
changes and all OR events, including the patient’s arrival, EEG recording start
and end times, surgical events, induction, intubation, and extubation.

Ten cases were selected to be included in this dataset if they met the
following inclusion criteria: i) The patient underwent general anesthesia. ii) The
recording did not exhibit excessive muscle artifacts or electrical impedance from
electrocautery. iii) The recording does not exhibit data quality issues characteristic
of SedLine as reported in ref. 34. iv) The primary hypnotic agent was propofol. v)
The EEG exhibits high alpha band power during unconsciousness. With regards
to criterion (iii), Von Dincklage et al. (34) describe the following three main
problems in EEG recordings from the SedLine monitors: a) An undocumented
change in the sample rate of the recorded EEG due to a change in display
feed; b) An undocumented change in the amplitude and quantization of the
recorded EEG; and c) Clipping or stair-step-like distortion of the EEG signal
that’s dependent on the position of the signal on the screen. To address (a)
and (b), we ensured that the display feed settings did not change during data
collection to prevent undocumented changes in the sample rate, amplitude,
and quantization. To address (c), we visually inspected the recording to ensure
selection of cases without clipping or stair-step-like distortion of the EEG signal.
Surgical patients under propofol-mediated unconsciousness, with weak-
ened, absent, or dissipating alpha waves. This dataset was created in the
same way as the dataset for surgical patients under propofol-mediated
unconsciousness showing strong alpha waves, with the exception of the last
criterion which was substituted with the following: (v) The EEG exhibits low
alpha band power, dissipating alpha oscillations or absence of alpha oscillations
during unconsciousness.
Surgical patients under sevoflurane-mediated unconsciousness. This dataset
was created from a database of real-time EEG recordings of 247 patients who
underwent general anesthesia or monitored anesthesia care between November
1, 2011 and August 20, 2015. Clinical information including approximate times
of drug changes and events such as induction, intubation, and extubation were
collected from the Epic electronic medical record system. Frontal EEG data were
recorded using the SedLine brain function monitor (Masimo Corporation, Irvine,
CA) with a pre-amplifier bandwidth of 0.5 to 92 Hz, sampling rate of 250 Hz, and
with 16-bit, 29 nV resolution. The Fp2 channel was used for further analysis.

Ten cases were selected to be included in this dataset if they met the
following inclusion criteria: i) The patient underwent general anesthesia. ii)
The recording did not exhibit excessive muscle artifacts or electrical impedance
from electrocautery. iii) The primary hypnotic agent was sevoflurane. iv) The EEG
exhibits high alpha band power during unconsciousness.

Filtering and Signal Processing. EEG polarity was adjusted so that the initial
burst of activity during burst suppression corresponded to positive deflections,
corresponding with spiking activity in NHP studies (8). All EEG spectrograms for
visualization were computed using the multitapered method (35). The alpha
and slow oscillations were obtained from the raw EEG by band-pass filtering
between 8 and 14 Hz (alpha) and 0.3 to 4 Hz (slow-delta), respectively, using a
second-order Butterworth filter.

A state-space Gaussian Kalman filter was implemented to derive estimates
of the durations utilized in AMI and SMI, in an online manner for real-
time computation. Let y and x denote, respectively, the observation and its
corresponding latent state that needs to be estimated. The state and observation
equations were defined as:

xn+1 = xn + vn1t [1]
yn = xn + εn [2]

where 1t is the EEG sampling period, and vn ∼ N (0, σ 2
v ) and εn ∼

N (0, σ 2
ε ) are independently and identically drawn (iid) from gaussian

distributions. Let xn|m andσ 2
n|m denote the state at time n and its corresponding

variance, respectively, estimated from the observations y0, · · · , ym. The one-
step Kalman prediction equations become

xn|n−1 = xn−1|n−1 [3]

σ 2
n|n−1 = σ 2

n−1|n−1 +1t2σ 2
v . [4]

The Kalman gain is

Kn =
σ 2

n|n−1

σ 2
n|n−1 + σ 2

ε

[5]

and the Kalman update equations become

xn|n = xn|n−1 + Kn(yn − xn|n−1) [6]

σ 2
n|n = (1− Kn)σ

2
n|n−1 [7]

Initial conditions x0|0 and σ 2
0|0 for filtering were computed by running the

Kalman filter on the reversed signal, namely y[M − n] where M is the length
of y. The initial conditions can instead be determined, with no changes to the
resulting filtered traces, by computing the mean of yn and the variance of
yn − yn−1 in a time window around the initial time.

In our equations, the Kalman gain Kn quickly converges to K (36) satisfying
(1 − K)1t2σ 2

v = K2σ 2
ε , and the interpretation of our Kalman filtering

coincides with applying a first-order low-pass filter with cut-off frequency of
Kfs/2π where fs denotesthesamplingfrequency.Weadjust thecut-off frequency
to coincide with a period of 5 min (D = 300 s), to focus on the variations at that
temporal scale. For AMI-related computation, we set σv and σε to be any pair
that satisfies (1 − λ)1t2σ 2

v = λ2σ 2
ε with λ = 2π/(Dfs). In this setting, λ

coincides with the steady state Kalman gain. For SMI-related computations, we
scale the observation noise variance by a factor of 10. In general, by changing λ
(via D), one can control the smoothness of the filtered curves.

For the volunteer and sevoflurane subjects (1/1t = 250 Hz), we fixed
σε = 1 and σv = 0.0209 for AMI, and σε = 10 and σv = 0.0209 for
SMI. For the propofol surgical subjects (1/1t = 178 Hz), we fixed σε = 1
and σv = 0.0207 for AMI and σε = 10 and σv = 0.0207 for SMI. Most
importantly, these parameters were fixed to be the same for all subjects in their
respective category, depending on EEG sampling frequency.

An alternative approach would be to determine σ 2
ε and σ 2

v using an EM
algorithm with prior distributions on σ 2

ε and σ 2
v (15).

Both AMI and SMI use the same calibration 300 s window to determine
the modulation thresholds. See the following subsections on AMI and SMI
computation for more details.

AMI Computation. The alpha oscillation EEGalpha was obtained by band-pass
filtering between 8 and 14 Hz using a second-order Butterworth filter. The goal
was to fix a modulation threshold M and determine when the upper envelope
of EEGalpha is above or below M, indicating a period of up-state or down-state,
respectively.

For a fixed modulation threshold, the up-/down-states were determined
as follows. All the peaks of the absolute value signal |EEGalpha| above M
were determined, and any time point within 50 ms (half the period of a
10 Hz oscillation) of such a peak was considered to be in an alpha up-state.
The remaining time points corresponded to an alpha down-state. A peak in
|EEGalpha| was detected at time point k if |EEGalpha| at time points k − 1 and
k + 1 had values lower than that at time point k.

For a calibration window of 300 s, the modulation threshold M was
determined as the 50th percentile of the amplitudes of all the peaks of EEGalpha
within that calibration window. This choice is designed to roughly yield up-
and down-states of similar durations during the calibration period. The peaks in
EEGalpha in the calibration window were similarly detected as done for |EEGalpha|.

The durations of all up-states and down-states were computed. The computed
durations appear in panel B, as blue and orange scatter plots, of all data figures.
A signal for the up-state duration was formed by setting the value between the
start of an up-state and the start of a next one (following a down-state) to be the
duration of that first up-state. A similar down-state duration signal was derived,
considering down- instead of up-states.

Real-time versions of the duration signals, for use as real-time observations in
the AMI computation, that do not depend on future information were derived as
follows. The observed duration of an alpha up-state at time n corresponds to the
maximum between the duration of the current up-state until time n (if at time n,
alpha oscillations are in an up-state) and the duration of the last alpha up-state.
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If at time n, alpha oscillations are in a down-state, then the observed duration is
the duration of the last up-state. The signal was defined similarly for down-states.
These signals were then passed through a Kalman filter for estimating the latent
state duration, to yield two duration signals dup and ddown, which also appear
in panel B of all data figures.

An EEG signature was derived as salpha = log(dup/ddown) which tracks the
evolution of the duration of up- and down-states, and the marker was derived
by applying a logistic function on salpha, specifically 1

1+exp(−γ salpha)
, which

yields

AMI =
dγup

dγup + dγdown

. [8]

The quantityγ dictates the dynamic range of AMI and how quickly AMI saturates
near 0 or 1. We set γ = 0.5 for AMI throughout the study. This value can be
modified as needed depending on the situation.

Our Kalman filtering assumes that the noise term εn = yn − xn
is independently and identically distributed. In filtering for alpha up-state
durations, the observation yn is fixed during an alpha down-state, yielding
correlated observations. However, the state variable of the up-state duration can
still vary. Indeed, anesthetic effect site concentration can continue to increase or
decrease during a down-state, altering the length of the next up-state which is
not yet observable. Therefore, throughout the assumed process, yn − xn is not
correlated by design, and therefore, the iid assumption is satisfied.

While the evolution for alpha up- and down-states have been obtained
separately through Kalman filtering, after which AMI is computed, it is possible to
combine these observations into one estimation framework. Indeed, AMI results
from applying a logistic function onto the signature sα = log(dup/ddown). It
is then possible to derive corresponding linear state and observation equations
from sα = log(dup)− log(ddown), upon which to apply Kalman filtering, and
directly estimate AMI. This approach is a subject of future work.

Additional practical considerations for AMI computation are detailed in
SI Appendix.

SMI Computation. The slow oscillation EEGslow was obtained by band-pass
filtering between 0.3 and 4 Hz using a second-order Butterworth filter. The goal
was to fix two modulation thresholds MC (crossing) and MQ (quiescence), with
MC < MQ and determine the duration of a slow oscillation cycle in EEGslow
each detected by crossings at MC and the duration of the down-states, being the
periods of EEGslow below MQ.

To determine the duration of a slow oscillation cycles in EEGslow , the time
points where EEGslow crosses MC were determined and EEGslow was segmented
into cycles delimited by three crossings: a first crossing from below MC that
indicated the start of a cycle, a mid crossing from above MC , and a final crossing
from below MC that indicated the end of a cycle. Each cycle then consisted of a
positive deflection followed by a negative deflection. The duration of all cycles
was determined, and two signals, one for the cycle duration and one for the
frequency of cycles, were derived by setting the value at a time point equal to the
duration (or frequency) of the cycle it belongs to. The computed cycle durations
are shown in a green scatter plot in panel D of all data figures.

Real-time versions of the cycle duration and frequency signal, for use as
observation signal in the SMI computation, that do not depend on future
information were derived as follows. The observed duration of a slow cycle at
time n corresponds to the maximum between the duration of the current slow
cycle until time n and the duration of the last slow cycle. The signal was defined
similarly for the frequency of cycles observation. These signals for the cycle
duration and cycle frequency were passed through a Kalman filter to yield two
signals dslow and fslow . The signal dslow appears in panel D of all data figures.

To determine the duration of the down-states in EEGslow , all time points
with values below MQ were considered to belong to a down-state. The different
durations of the down-states were determined, and a down-state duration signal
was formed by setting the value at the time point to be the duration of its
corresponding down-state if it was during one, or the duration of the previous
down-state if it does not belong to one. Real-time observation signal were
derived as performed for the cycle duration and frequency above, then Kalman
filtered to yield a signal dsuppression, which appears in panel D of all data figures.

For a calibration window of 300 s, we determined MC by a parameter sweep,
choosing the threshold that maximizes the number of crossings in that window.
Note that MC has a value near 0 given the bandpass filtering between 0.3 and
4 Hz to obtain the slow wave. To determine MQ, we find a threshold M′ > MC in
that calibration window such that the frequency of crossings is reduced by 30%,
and then slightly lower that threshold, e.g., by defining MQ = 0.5MC +0.5M′.
The suppression periods during burst suppression will fluctuate around MC , and
the definition of MQ is to ensure that they are detected by raising the threshold
MC to one that reduces crossing, and then lowering it again to ensure that it
does not erroneously detect low-amplitude nonsuppression slow cycles. Other
threshold calibration schemes, or detection methods, are also possible, and can
be a subject of future research.

An EEG signature was derived as

sslow = log(
fslow/f̄slow

dsuppression/d̄suppression
)

where f̄slow and d̄suppression denote the average over the calibration window
of the crossing frequency and down-state duration, respectively. The signature
tracks the evolution of the slow oscillation dynamics, and the marker was derived
by applying a logistic function on sslow , specifically 1

1+exp(−γ sslow)
, which yields

SMI =
(fslow/f̄slow)γ

(fslow/f̄slow)γ + (dsuppression/d̄suppression)
γ
. [9]

Similar to the case of AMI, the quantity γ dictates the dynamic range of SMI,
and how quickly SMI saturates near 0 or 1. We set γ = 2 for SMI throughout
the study. This value can be modified as needed depending on the situation.

Similar to what was suggested for AMI computation, it is also possible to
combine the two observations for SMI into one estimation framework. This
approach is a subject of future work.

Additional practical considerations for SMI computation are detailed in
SI Appendix.

BSP Computation. The BSP computation is derived from ref. 15 and adapted
to the analysis in this paper. A state-space algorithm was implemented to derive
BSP. Details of the algorithm are provided in SI Appendix.

Biophysical Modeling. Our biophysical model consisted of interconnected 80
pyramidal neurons (PYR) and 20 fast-spiking interneurons (FS). All neurons are
modeled using a single compartment with Hodgkin–Huxley-type dynamics. The
voltage change dv/dt in each cell with membrane capacitance cm is described by

cm
dv
dt

= −
∑

Imembrane −
∑

Isynaptic + Iapp + Inoise.

All cells display a fast sodium current (INa), a fast potassium current (IK), and a
leak current (IL) for membrane currents (Imembrane). PYR additionally displayed
an ATP-gated potassium current (4, 37) that captures the metabolic effect and a
global inhibitorycurrent thatcaptures inhibitory facilitationof thecorticothalamic
system. The synaptic currents (Isynaptic ) depend on the connectivity. Details on
the modeling are provided in SI Appendix.
Adenosine triophosphate (ATP)-gated potassium current. This current is
adapted from refs. 4 and 37 and encapsulates the metabolic effect on neurons.
It is defined as

IKATP
= gKATP

z(V − Ek) with z =
1

1 + 10[ATP]
[10]

and governed by the following two equations:

[Ṅa] = FINa − 3Km[Na]3[ATP] [11]

[ ˙ATP] = JATP([ATP]max − [ATP])− Km[Na]3[ATP] [12]

The value of JATP governs the rate of ATP production and was decreased as
propofol concentration increased, as a proxy for metabolic impairment. Low
levels of ATP will open up the KATP channels which hyperpolarizes the cell. The
cell is then in a state of suppression until ATP levels replenish. That duration
lengthens as the production rate is impaired (see SI Appendix for more details).
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Global thalamocortical inhibition current. This current encapsulates the
neurophysiological effect on neurons during the modulation and is defined as

Iglobal = gglobalv [13]

with gglobal = 0.1 μA·cm−2 and

v̇ = −0.001v +
1

1 + exp[−10(
∑

n[Na]− Lglobal)]
. [14]

The quantity
∑

n[Na] is summed over all PYR neurons, as a proxy for the
aggregate activity in the network, that will trigger the global inhibition.
The threshold Lglobal was decreased as propofol concentration increased.
Synchronous high activity in cortex triggers a surge of inhibition or disexcitation
through the corticothalamic system, that lead to a momentary shutdown of
activity (see SI Appendix for more details). A full corticothalamic biophysical
implementation of the global inhibition current can be achieved by
incorporating a thalamic model of thalamocortical (TC) and reticular (RE) cells
(6, 18). In particular, depolarization of TC cells can switch the thalamus out
of bursting mode to yield a momentary down-state in thalamic activity (18).
This depolarization can be triggered by a synchronous surge of cortical activity
(18, 38) and a mechanism of how thalamocortical feedback could influence the
EEG as a function of propofol effect-site concentration is elaborated in ref. 38.
Aggregate activity, simulations, and analysis. The aggregate population
activity, from which spectral information was determined, consisted of the
sum of the membrane potentials of the PYR cells. Our simulations only altered
the parameters JATP and Lglobal to represent different effect site concentrations.
The exact values are given in Table 1. Details on all the model parameters are
given in SI Appendix.

Our network model was programmed in C++ and compiled using
GNU gcc. The differential equations were integrated using a fourth-order

Table 1. Simulation parameters for Fig. 7
EEG trace a b c d e f g

Lglobal 16 15 14 14 14 14 14
JATP 0.04 0.04 0.024 0.008 0.004 0.0024 0.0016

Runge–Kutta algorithm, with integration time step of 0.05 ms. The model
output was analyzed using Python 3.

Data, Materials, and Software Availability. Anonymized EEG data have
been deposited in PhysioNet (https://physionet.org/) (39).
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