MechSense: A Design and Fabrication Pipeline for Integrating Rotary Encoders into 3D Printed Mechanisms

ANONYMOUS AUTHOR(S)

Fig. 1. (a) MechSense allows 3D printed mechanisms to sense their direction of rotation, speed, and angular position using a floating capacitor on the moving part and sensor patches on the static part of the mechanism. (b) A smart linkage-based lamp that changes the color of the light when the linkage bars are moved, (c) a distance measuring wheel that can measure the dimension of surfaces, and (d) a planetary gear box that can sense its own state.

We introduce *MechSense*, 3D-printed rotary encoders that can be fabricated in one pass alongside rotational mechanisms, and report on their angular position, direction of rotation, and speed. *MechSense* encoders utilize capacitive sensing by integrating a floating capacitor into the rotating element and three capacitance sensor patches in the stationary part of the mechanism. Unlike existing rotary encoders, *MechSense* does not require manual assembly but can be seamlessly integrated during design and fabrication. Our *MechSense* editor allows users to integrate the encoder with a rotating mechanism and exports files for 3D-printing. We contribute a sensor topology and a computational model that can compensate for print deviations. Our technical evaluation shows that *MechSense* can detect the angular position (mean error: 1.4°) across multiple prints and rotations, different spacing between sensor patches, and different sizes of sensors. We demonstrate *MechSense* through three application examples on 3D-printed tools, tangible UIs, and gearboxes.

CCS Concepts: • Human-centered computing → Human computer interaction (HCI).

Additional Key Words and Phrases: 3D printed mechanisms, printed electronics, capacitive sensing.

ACM Reference Format:

Anonymous Author(s). 2022. MechSense: A Design and Fabrication Pipeline for Integrating Rotary Encoders into 3D Printed Mechanisms. 1, 1 (September 2022), 28 pages. https://doi.org/10.1145/nnnnnnnnnnn

1 INTRODUCTION

Advances in 3D printing over the last decades have enabled increasingly complex 3D printed objects, including objects with moving parts that contain mechanisms, such as gears, linkages, and wheels (Grafter [15]). While early 3D printed

⁴⁹ © 2022 Association for Computing Machinery.

- - Manuscript submitted to ACM

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Anon

⁵³ mechanisms were fully passive, researchers have started exploring how to augment 3D printed mechanisms with ⁵⁴ sensors to enable interactive applications.

To sense the motion of these 3D printed mechanisms, researchers traditionally used external sensors. For instance, researchers have used acoustic sensing via external microphones (*Lamello* [16]) or used hall effect sensors and magnets (*MechaMagnets* [23]) to determine the interaction with 3D printed objects. Using external sensors, however, requires additional assembly.

Recently, the advent of multi-material 3D printing with conductive filament has enabled the integration of sensors with 3D printed geometries. For instance, researchers have shown how to print capacitive sensors from conductive filament to integrate touch sensors (*Capricate* [18]) and deformation sensors (MetaSense [9]) with 3D printed object geometries. Thus, a variety of different sensors can now be 3D printed together with the object geometry in one pass, facilitating the creation of interactive objects.

For rotational mechanisms, such as gears, linkages, and wheels, however, no sensor design has been proposed yet that can be 3D printed in one pass. To sense direction of rotation, speed, and angular position of rotational mechanisms, existing encoder designs require additional manual assembly. For instance, *SteelSense* [21] enables high-resolution sensing of rotational elements, such as hinges and ball bearings, but requires metal casting of the sensing elements that afterwards have to be manually integrated into a 3D printed casing. Similarly, Karali et al. [10] demonstrate a capacitive rotation sensor that utilizes two patterned copper plates that change their capacitance depending on the relative angle to each other. However, the copper plates cannot be 3D printed together with the object geometry, and thus, require manual assembly.

In this paper, we introduce MechSense, a fabrication pipeline based on conductive multi-material 3D printing that 77 78 can print the geometry of the mechanisms and sensors together in one pass without the need to assemble the conductive 79 and non-conductive parts. We focus on rotating mechanisms and develop a sensor layout that utilizes tracking of a 80 floating capacitor which can augment various rotational mechanisms with the ability to sense their direction of rotation, 81 speed, and angular position (Figure 1). To better understand user's familiarity with multi-material 3D-printing and to 82 83 identify the design software they most commonly use, we conducted a survey of 20 hardware design professionals. 84 Based on the survey results, we built a 3D editor add-on for SolidWorks that automatically integrates the sensor layout 85 into the mechanism's geometry and exports files for 3D printing. In our technical evaluation, we determine the angular 86 position estimation error for sensors with different spacing between sensors, the effect of the sensor patch size, and the 87 impact of the proximity of the user's hand, near the MechSense encoder. We demonstrate the usefulness of this method 88 89 with three application examples for tangible user interfaces, construction tools, and gearboxes. 90

- In summary, we contribute:
 - a *sensor layout* based on a floating capacitor that can be integrated with 3D printable rotational mechanisms to determine their direction of rotation, speed, and angular position (mean error: 1.4°);
 - a *3D editor extension* that automatically integrates sensors into mechanical components and generates the files for 3D printing;
 - a Java/Processing tool that converts the raw sensor data into angular position, direction of rotation, and speed.
 - a *technical evaluation* of the angular position accuracy for different spacing between sensors, the effect of the size of the sensor patch, and the influence of a user's hand in proximity to the capacitive sensor;
 - three *applications* that demonstrate sensing integrated with various rotational mechanisms for tangible user interfaces, construction tools, and gearboxes.

104 Manuscript submitted to ACM

56

57 58

59

60

61

62 63

64

65

66

67 68

69

70

71

72 73

74

75

76

91

92

93 94

95

96

97

98 99

100

101

102

2 RELATED WORK

105 106

107

108 109 110

111

129 130

131

132 133

135

136 137

138

139

Our work is related to research that investigates how to fabricate rotary encoders, 3D print sensors, and integrate sensors into mechanical elements.

2.1 **Rotary Encoders Using Capacitive Sensing**

Many rotational mechanisms use encoders to retrieve data on the position and the speed of the rotating element. Most 112 113 commercial encoders utilize optical or inductive sensing approaches, but researchers have also investigated ways to 114 fabricate capacitive encoders since the sensor elements do not require contact between the stationary sensor and the 115 rotating element. For example, Cermak et al. [3], Gasulla et al. [4], Ferrari et al. [2], and Karali et al. [10] developed 116 rotational encoders that consist of two stationary circular conductive plates opposite of one another, where one of the 117 118 plates is segmented into electrodes that acts as a capacitive pair with the other stationary plate. The two stationary 119 plates are separated by a rotating insulator or a conductive plate that triggers changes in the capacitance for each 120 electrode. In all these approaches, the suggested encoder geometry consists of at least three plates that have to be 121 individually fabricated, for example, by copper etching, and have to be manually mounted on a motor shaft. Additionally, 122 123 Zheng et al. [24], Hou et al. [7] and Wang et al. [22] demonstrated approaches that utilize a pair of conductive circular 124 plates, with one being a stator and one being a floating conductive rotor that is segmented into two parts via a complex 125 pattern that trigger changes in capacitance when the rotor plate is in motion. All of these methods require manual 126 assembly of the capacitive copper plates into a (3D printed) mechanism. In contrast, MechSense enables users to print 127 128 the entire object with integrated mechanisms and rotational sensors in one pass.

2.2 3D Printed Sensors

More recently, researchers started to use 3D printing with conductive filament to fabricate objects with integrated sensors in one go. One example of this is the integration of direct touch sensing with 3D printed objects. Capricate [18] 134 and PrintPut [1], for instance, provide editors to embed touch sensors, sliders and touch pads into 3D printable objects. Similarly, Let's Frets! [14] is a 3D printed capacitive fretboard that detects the user's fingers to help teach guitar playing. In addition to 3D printing the sensor geometry, *ModElec* [6] also automatically creates the internal conductive circuit traces necessary to route the sensor to an external microcontroller.

Rather than using 3D printing with conductive filament for direct touch sensing, researchers also investigated how 140 to embed sensors that interact with other objects, such as capacitive surfaces. For instance, Flexibles [20] are tangible 141 142 objects with embedded conductive material whose deformation can be sensed via a capacitive touch screen. CAPath [11] 143 extends this work by also providing tangible sliders and knobs. itsy-bits [19] are 3D printed tangibles with embedded 144 conductive markers that can be used to identify which tangible is used on a capacitive screen. Similarly, 3D-Auth [13] 145 are 3D printed tangibles with conductive patterns, which allow for two-factor authentication. Off-line sensing [17] 3D 146 147 prints conductive sensors inside 3D objects connected to channels that contain liquids. When the object moves, the 148 liquid bridges the gap between the capacitive areas, which can be used to detect orientation. However, none of these 149 works investigate how to use conductive 3D printing to embed sensing into mechanical elements. 150

151 152

153

2.3 Integrating Sensing into Mechanical Elements

Over the last decade, the majority of work that added sensing to 3D printed mechanical elements used external sensors. 154 For example, Lamello [16] uses acoustic sensing to detect interaction with physical sliders and rotary knobs, i.e. when the 155 156 Manuscript submitted to ACM

mechanism gets rotated or moved, it makes a noise which can be sensed with a microphone. *MechaMagnets* [23] integrates
 hall effect sensors and magnets into 3D printed objects for haptic and physical motion feedback. *StrutModeling* [12]
 uses rotational encoders in the metal connectors of 3D printed strut elements to sense how users assemble the struts.
 3D Printing Wireless Connected Objects [8] 3D prints gears and springs and adds conductive copper tape after printing
 has finished to create wifi signals when the mechanisms move.

163 More closely related to our work is research that uses conductive multi-material 3D printing to integrate sensing 164 into mechanical structure. MetaSense [9] uses conductive 3D printing to integrate shear sensing into mechanical 165 metamaterials. FlexKeys [5] similarly uses conductive multi-material 3D printing to create deformable springs that 166 167 require no support material and can be used as sensors integrated with input devices such as keyboards. However, 168 these works do not show how to integrate sensing with rotating mechanical elements, such as gears and linkages. 169 While SteelSense [21] focuses on rotating mechanical elements, such as gears, hinges, screws, and bearings, it requires 170 assembly since the conductive parts are metal-cast separately from the rest of the 3D print. 171

In summary, the existing work either requires multiple fabrication steps and manual assembly, or does not support rotating mechanisms, such as gears, linkages, and wheels. In contrast, *MechSense* provides an end-to-end fabrication pipeline for integrating *MechSense* encoders into 3D printable mechanism, provides a sensor layout that generalizes across different rotational mechanisms, and contributes a computational model to convert raw sensor data into angular position, direction of rotation, and rotational speed.

181

182

183

184 185

186

172

173

174

175

176

3 SURVEY OF HARDWARE DESIGN PROFESSIONALS

We conducted a survey of product design engineering professionals at a large cross-industry consulting company to understand their familiarity with multi-material 3D printing, other smart materials, and the design engineering process in general. In doing so, we hoped to identify features which may make our design tool more effective, particularly in regard to existing utilized tools. 20 professionals responded to the survey including mechanical engineers (7), electrical engineers (7), industrial designers (5), and a product manager (1).

187 One key insight was the prevalence of participants who stated they had challenges integrating mechanical and 188 electrical systems (50%). P17 explains 'mechanical constraints are sometimes in conflict with electrical requirements' 189 and P13 goes on to say 'electronic component placement vs. mechanical volumetric constrains [are often a challenge]." 190 191 Additionally, 14 participants shared interest in using or have already used advanced materials and manufacturing 192 methods, such as multi-material 3D printing, with 18 being interested in creating smart products with these materials 193 and methods in the future. Broadly, such responses indicated a need for better integration of mechanical and electrical 194 195 components, and an opportunity to accelerate and simplify prototyping in electro-mechanical products.

In terms of existing design tools used by our respondents, we found SolidWorks is the most commonly used CAD modelling software (n=10), followed by Rhino (n=5) and Fusion360 (n=2). Based on these results, we created an add-on for SolidWorks that allows designers to automatically integrate the sensing directly into the design of the mechanical components for faster and easier prototyping.

196

197

198

199

4 MECHSENSE

MechSense is a method that uses multi-material 3D printing with conductive filament to augment 3D printed rotational mechanisms, such as gears, linkages, and shafts, with sensing capabilities. It uses capacitive sensing to detect the speed of rotation, direction of rotation, and angular position.

4.1 Sensor Design

When deciding on how to design the sensor, we took into account that rotational mechanisms all move around a static shaft. The obvious approach would be to add an active capacitive sensing patch to both the shaft and to the rotating component, such as a gear, where both components are connected to sensing circuitry. However, the sensor on the rotating element has to be in constant connection to the 3D printed circuitry, which is difficult to achieve since 3D printed electrodes might frequently loose connection or have a high and variable resistance.

Therefore, we developed a capacitive sensor design that incorporates a floating capacitor into the rotating component, such as the gear, and three sensor patches arranged in a circle around the static component, such as a shaft or a base plate (Figure 2) that can be fully 3D printed in one pass. Using capacitive sensing with this geometry eliminates the need for direct contact to the sensor patch in the moving component of the mechanism, thus allowing the moving component to rotate freely, providing a consistent sensor signal.

Fig. 2. Our sensor layout consists of a floating capacitor in the moving part of the mechanism and three sensor patches on the static part of the mechanism that are wired to a capacitance sensing board.

The sensor patches on static part of the mechanism are connected to a capacitance sensing board (FDC2214 Sensor Board). The floating capacitor is integrated into the moving part of the mechanism and is not wired to the circuitry. Instead the floating capacitor creates a coupled capacitance system between neighboring sensing patches. The amount of overlap between the floating capacitor and the sensor patches impacts the capacitance of the system, which we utilize to determine the location of the floating capacitor. This enables us to track the moving part of the mechanism while it is freely rotating.

4.2 Sensor Signal Properties

Figure 3 shows the signal of one sensor patch while the floating capacitor is rotating by 360°. We observe four different features in the signal: (1) a global minimum, (2+3) two maxima, and (4) a local minimum.

Global Minimum (No Overlap): When the floating capacitor and the active sensor patch have no overlap, we observe
 a global minimum in the signal (Figure 3 at 300° - 60°). The reason for this is that the floating capacitor is not coupled
 with the sensor patch and thus the detected capacitance is lower than in the other states.

Maxima #1 and #2 (Half Overlap): When the floating capacitor half overlaps with the active sensor patch and one of the neighboring patches, we observe two maxima. Although the shape of the sensing patches is identical, differences in print quality create different conductivity across patches. This results in different peaks for each sensor rather than identical global maxima for all sensor patches. We observe these maximum values because the floating capacitor has an even overlap between the sensing capacitor plate and the neighboring capacitor plate which acts similar to a grounded patch as it is connected to the sensing board. Thus, we observe a coupled capacitance that is maximal if the floating capacitor has a half overlap with both the active sensing patch and one of the neighboring patches (Figure 3 at 120° and 240°).

Local Minimum (Full Overlap): When the floating capacitor and the active sensor patch are aligned, we observe a *local minimum*. The reason for this is that the floating capacitor has no overlap with the neighboring patches but is still in close proximity to them which leads to a small but measurable coupled capacitance (Figure 3 at 180°). Thus, the measured sensing value is still larger than the global minimum since the floating capacitor has no overlap with the sensing patch (Figure 3 at 360°).

Fig. 3. Signal profile of one sensor patch when the floating capacitor overlaps by different amounts and corresponding angular positions. We observe maxima and minima of the sensor signal at distinct positions of the floating capacitor.

Simulation: To better predict and explain the theoretical response of a particular sensor geometry, we built a com-putational simulator in Python that predicts the waveform by calculating the capacitance over the position for each sensing element. It then combines these into a model of the overall system capacitance. The model takes as input the following parameters that describe the sensor geometry: inner and outer radii of sensing patches integrated into the rotating component, the distance between the sensing plates and passive elements, the size of the sensing plates minus the gap between plates, and the width of the passive element. First, the capacitance of a single sensing element is modelled independently as a function of the floating element's position. Then the independently modelled sensors are Manuscript submitted to ACM

combined into a model of system capacitance by treating the primary sensing patch as a capacitor in series with all
 other capacitors, which are connected in parallel to an arbitrary, yet stable, reference. Figure 4 shows our simulation
 result, which exhibits a similar waveform as the measured sensor signal.

Fig. 4. Simulation of the signal profile of one sensor patch for two full rotations.

4.3 Sensing Angular Position

317

318

330 331

336

353

Our goal is to derive the angular position from the capacitance values that we read from each of the sensor patches 337 while the floating capacitor is rotating over them. To do that, we proceed with the following steps: (1) We preprocess 338 339 the sensor data with a low-pass filter to reduce noise; (2) We determine the capacitance values of each extremum in 340 the signal (e.g. the local minimum); (3) We divide the signal into 5 segments with 4 segments located between two 341 extrema and one segment in the constant global minimum (Figure 5a); (4) We normalize the segments that are not 342 in the constant global minimum and fit a polynomial to the sensor values that approximates the signal within each 343 344 segment (Figure 5b). We can compute the angular position of the rotating element by determining the current signal 345 segment it is in and estimating the current angle using the polynomial of this segment; and (5) we estimate the angle 346 across all 3 sensor patches and calculate the average of all estimates. Since the sensor signal is constant in the global 347 minimum across 120°(i.e. the floating capacitor has no overlap with the sensor patch), we cannot derive any angle in 348 349 this region. Thus, we designed the sensor to contain 3 sensor patches such that the floating capacitor in the moving 350 element always overlaps with at least one sensor patch at all times. If more than one sensor patch is not in the global 351 minimum and outputs an angle estimate, we average between multiple sensor patch estimates. 352

Preprocessing of Raw Sensor Data: The raw sensor data contains noise that leads to the occurrence of multiple false local extrema. Hence, we apply a moving average filter to smooth the data. We chose a window size of 8 that is large enough to obtain a smooth signal but is also small enough to preserve the magnitude of the extrema.

Detecting Extrema in the Sensor Signal: The key features for our angle estimation algorithm are the minima and maxima in the sensor signal over a full rotation. We find these extrema during an initial calibration step which has to be done once before using the sensor (Section 4.4). In this calibration step, we fully rotate the mechanism 3 times and use a peak detection method to identify the extrema. After storing the sensor values for these extrema, we use them for detecting extrema in live data by thresholding all incoming sensor values for these extrema points. We also Manuscript submitted to ACM

Fig. 5. Processing of sensor data to estimate the angular position of the rotating element. (a) Segmenting the sensor signal into 5 segments where each segment corresponds to a 60° rotation of the element with the exception of segment 5 which spans over 120°. Each segment is bijective, i.e. there is only one possible angle for a reading from the sensor. (b) Approximating segment 1-4 with a 4th-degree polynomial. We invert segment 2 and 4 such that all segments are monotonically increasing.

take into account that the rotating element cannot randomly jump from one angular position to another, i.e. if the rotating element just passed through the local minimum, the next possible extremum can only be the maximum #2 if rotating clockwise (Figure 5a). Thus, we keep track of our last visited extrema and threshold only for the next possible extremum.

Segmenting the Sensor Signal: We divide the sensor signal into 5 segments where 4 segments are between two neighboring extrema of the signal and the fifth segment lies within the global mininum of the sensor (Figure 5a). For example, segment 1 is between the global minimum and the first maximum which corresponds to when the floating capacitor is between 60° and 120°. Within each segment, the sensor signal is strictly monotonically increasing or decreasing which means that for a specific sensing values there is only one possible angle position. We segment the sensor signal because one sensing value can have multiple possible angle positions throughout the entire signal.

Fitting a polynomial to each segment: Our goal is to generate a 4th-degree polynomial that approximates all sensing
 values per segment and outputs an angular position for a sensor reading. To do that, we first ran an experiment by
 rotating a gear with an integrated MechSense encoder 50 times and captured the generated sensor data (3mm patch
 Manuscript submitted to ACM

Fig. 6. Smoothing sensor data. We apply a moving average filter (windows size = 8) to the raw sensor data to attenuate local fluctuations.

distance, $765mm^2$ sensor patch size, 10 RPM, Figure 18). We then segmented the sensor data as described above. Next, we normalized all sensor data within each segment using the extrema values and mirrored the data for segment 2 and 4 such that each segment showed only increasing sensing values (Figure 5b). After that we fitted a 4th degree polynomial to each of the 4 segments (that are not the constant global minimum), i.e. we generated 200 polynomials (50 rotations x 4 segments). Finally, we averaged the coefficients across all 200 polynomials. The resulting polynomial of the form $f(x) = ax^4 + bx^3 + cx^2 + dx + e$ has the coefficients $a = 1.74 * 10^{-7}$, $b = -2.86 * 10^{-5}$, c = 0.00131, d = 0.0034, and e = -0.00863.

After defining our approximation polynomial, we can now apply the polynomial directly to the normalized live sensing values of each segment which generates our angle estimation. We use the same polynomial for all angular position estimations across multiple prints and for all segments. Different sensor values at the extrema are compensated through the normalization step, i.e. the magnitude of the minima and maxima might be different for an individual print which gets scaled to a range between 0 and 1 through the normalization step.

Detecting the current segment for Real-Time Sensing: When starting the sensor for the first time, the rotating element might be in an unknown angular position. To detect the current position of the rotating element, we have to detect two extrema to identify in which segment the rotating element is located. While detecting only one extrema already allows us to detect the current position of the rotating element, it is not possible to estimate the direction of rotation and the current segment in which the floating capacitor is located. For example, if the rotating element is detected at the local minimum and the subsequent sensor values are increasing, it is not clear if the rotation is clockwise or counterclockwise. Thus, the mechanism has to pass through a second extremum to identify the direction of rotation and the current segment. For example, if the rotating element passes through the local minimum and then through the global maximum, we can determine that the rotation is clockwise and the element is in segment 4.

Manuscript submitted to ACM

In our implementation, we store the current location of the rotating element even when the sensor is unplugged. This allows us to keep track of the angular position also without an initial rotation through 2 extrema in case the floating capacitor has not been moved. In any other case, our algorithm can detect the angular position and the direction of rotation after passing through 2 extrema.

Fig. 7. Detecting extrema during calibration using sensor data of multiple patches. We first detect the global minima in all sensor patches using the 20% lowest percentile of sensor values. Next, we can use the location of the global minima to detect the maxima in adjacent patches. For example, if sensor patch 3 is in the local minimum, we can identify maximum #1 of sensor patch 1 by finding the largest sensor value of all withing the range of global minimum of patch 3. Finally, we can detect the local minimum as the smallest value between two maxima.

502 4.4 Calibration Phase

Before our computational model can estimate the angular position of the rotating element, we need to perform a calibration in which we detect the sensing values at the extrema of the sensor signal, i.e. the local/global minima/maxima. To do that, we rotate the printed mechanism three times by 360° to collect sensor values for each feature (3 rotations x 4 features = 12 extrema values total). We detect the extrema by taking into account all 3 sensor signals of the patches. The direction of rotation is critical during the calibration step to detect the maxima in the right order. Thus, we require the calibration to be done only rotating clockwise or counterclockwise. Our software tool allows users to set the direction of rotation before starting the calibration.

Global Minimum: We detect all sensor values that fall into the global minimum by finding the smallest and the largest
 sensing value throughout all rotations and define all values to be in the global minimum if they are within the 20%
 smallest values in the full range of values that we capture during calibration, i.e., we define all values to be a global
 minimum if they fall into the interval: [smallest value; 0.2*(largest value-smallest value)].

Maximum #1: To find the value for the first maximum, we take into account the location of the global minima of the
 neighboring sensor patches. If we overlay the sensor signals of all 3 sensor patches, we can see that the local minimum
 Manuscript submitted to ACM

of sensor patch 1 can only exist if the sensor values of patch 3 are within the global minimum (Figure 7). Thus, we detect 522 the first maximum as the largest value that we read for sensor patch 1 while sensor patch 3 is in the global minimum. With the same strategy, we can detect the first maximum for patch 2 if patch 1 is in the global minimum, and for patch 524 3 if patch 2 is in the global minimum.

526 Maximum #2: Similar to detecting the first maximum, we can detect the second maximum as the largest value within 527 a specific range that is defined by the neighboring sensor patches. Since the second maximum of sensor patch 1 can 528 only exists if the sensor value of sensor patch 2 are in the global minimum, we detect the second maximum as the 529 530 maximum sensor value within this range (Figure 7). Similarly, we can detect the second maximum of sensor patch 2, 531 when the sensor value of patch 3 are in the global minimum, and the second maximum of patch 3, while sensor patch 1 532 is in the global minimum. 533

534 Local Minimum: To detect the local minimum we take into account the values that we found for the two maxima. 535 Since the local minimum has to be located between these two maxima, we find the minimum value that is between 536 537 these two extrema.

4.5 Compensating for Sensing Value Variations at Extrema

521

523

525

538 539

540

548

556

563 564

565

569

It is possible that the sensor values at extrema change over time. This might happen due to friction of the rotating 541 element that might change its angle or distance to the sensor patches but also from external factors like humidity 542 543 changes that influence the print material or by the proximity of other capacitive objects like the user's hand. To 544 compensate for such variations we (1) modify the angular position estimation method to be robust against under- and 545 overshooting of the senor values at extrema, and (2) we update the current estimation of the sensor values at extrema 546 547 throughout multiple rotations.

Robustness of Extrema Detection: To compensate for overshooting at extrema points, we clamp the sensor values, 549 550 after normalization, to 1 if they are larger than 1 and to 0 if they are smaller than 0. Once the sensor values surpass 1, 551 we detect that as an extremum and switch from one segment to the next segment. It is also possible that sensor values 552 undershoot, i.e. they never reach a value of 1. In this case, we take into account the sensor values of the neighboring 553 patches. If one of the patches detects an extremum (i.e. the sensor values reach 1), we switch to the next segment 554 globally even if the other sensor patches do not detect an extremum. 555

Updating for Extrema variations: To compensate for changes in the extrema values over multiple rotations we 557 continuously update the extrema value using a moving average. For example, to update the sensor value for the local 558 559 minimum, we identify the smallest that we measured after passing through the local minimum. Next, we take the average 560 between the old estimate of the local minimum and newly detected value, i.e., LocalMinnew = 0.5 * (LocalMinold + 561 DetectedMin). We update all other extrema in the same manner. 562

4.6 Detecting Speed and Direction of Rotation

Speed: We compute the speed of rotation by measuring the change of angular position within a time frame. To do 566 that, we attach a time stamp to the sensor data before sending it from the microcontroller to our implementation of the 567 computational model and convert the change in angular position into Revolutions per Minute (RPM). 568

Direction of Rotation: To detect the direction of rotation, we first determine in which segment the sensor is currently. 570 Each segment has monotonically increasing or decreasing values if rotated clockwise. For example, segment 1 only 571 572 Manuscript submitted to ACM

shows increasing values if rotated clockwise. In the case that the sensor outputs decreasing values while being in segment 1, we can identify a counterclockwise rotation. The same principle can be applied to all other segments with the exception of the global minimum which is nearly constant. Since only one sensor patch can be in the global minimum at a time, we can estimate the direction of rotation using the other two sensor patches.

5 APPLICATIONS

Our technique allows us to integrate sensing with various rotating mechanisms to enable a wide range of applications, such as a distance measuring wheel, a linkage based lamp, and a planetary gear box.

584 5.1 Distance Measuring Wheel

To show how a wheel can be augmented with sensing capabilities, we integrate sensing into a distance measuring wheel (Figure 8). A user holds the measuring wheel by the handle and then rolls the wheel over a surface to capture its dimensions. The wheel measures distance by translating rotational information into linear information. We integrated the floating capacitor into the moving wheel, and the three sensor patches into a static plate parallel to the wheel $(765mm^2$ patch size with 3mm separation). Once connected to the sensing board, the integrated sensors measure the angular position, which allows the user to measure the dimensions of irregular geometries and big open spaces. Since MechSense can identify the direction of motion as well, the wheel only adds to the cumulative distance when the wheel

Fig. 8. A distance measuring wheel with integrated sensing that can measure perimeters of irregular geometries and large open spaces.

624 Manuscript submitted to ACM

is moved forward and subtracts any distance when the wheel is moving backwards. Our measuring wheel has a mean error of 1.45mm as shown by our technical evaluation on the accuracy of determining angular positions (Section 7).

5.2 Smart Desk Lamp with Linkages

 To demonstrate how MechSense can be used to integrate sensing into linkage-based rotation, we designed and manufactured a smart desk lamp (Figure 9), which consists of two linkage bars and a base. Rotating the linkage bars triggers different lighting conditions. Rotating the bottom linkage bar changes the color of the light, and rotating the middle linkage bar changes the brightness. We first augmented the bottom linkage bar and the corresponding static pin joint plates at the bottom of the lamp with sensors (76mm² patch size with 3mm separation). We then repeated the process for the second linkage bar and the middle pin joint plate. The sensors of each linkage bar are connected to their own sensing board.

Fig. 9. The smart desk lamp allows the user to set the color of the light by rotating the bottom linkage, and the brightness of the light by rotating the top linkage. To do that, we integrated two MechSense encoders in each linkage of the lamp, respectively.

5.3 Planetary Gear Box

Integrating sensors directly into a mechanisms geometry is particularly useful in space-constrained applications.

Fig. 10. This planetary gearbox can sense its own angular position and rotational velocity.

Manuscript submitted to ACM

One example of this is a planetary gearbox, which integrates multiple gears into a confined volume (Figure 10). Such gearboxes can be integrated into robotic arms and connected to a motor for actuation. By printing the static part of the sensors into the motor casing and the moving part into the geometry of the planetary gears, we are able to measure the angular position and the rotational velocity without increasing the overall size of the joint or requiring extra geometry for mounting an external encoder.

6 CREATING MECHSENSE OBJECTS

Based on our survey results, we build a MechSense plugin for SolidWorks using a C# script to facilitate the creation of objects with integrated sensing. The plugin automatically integrates the sensor design into a CAD model of the mechanism and then enables exporting files for multi-material 3D printing. After 3D printing the mechanism, users need to wire the sensors to the microcontroller, and upload the sensing code which streams raw sensor data to a computer connected via a serial port. We developed an implementation of our computational model and a UI for Java/Processing. The Processing UI enables users to calibrate the sensors, as described above. After finishing the calibration, our software converts the raw sensor data from the microcontroller into the estimations for the angular position, direction of rotation, and the speed of the rotating element. The computational model is implemented as a Java library that can be imported to any user-generated UI and application.

6.1 Designing the Mechanism

We developed a plugin for Solidworks that facilitates the integration of the sensor topology into a 3D mesh.

Fig. 11. Integrating sensing into a mechanism using the MechSense 3D editor plugin.

721Integrating Sensor Patches into the Static Part: To integrate the sensor patches into the static part of the mechanism,722the user selects the 'static part' option from the menu (Figure 11a). Next, the user clicks on the plane for the static part723onto which the sensor patches should be integrated. Finally, we need to define the center of rotation around which the724sensor patches will be distributed. To do that, the user selects the 'Center of Rotation' field and clicks on the circular725edge of the shaft. We compute the center of rotation by finding the mean point of all vertices that are in the circular726edge of the shaft. Once the face for the sensor patches and the center of rotation are defined, our plugin generates the727Manuscript submitted to ACM

sensor layout on the static part of the mechanism. The three sensor patches are generated by defining a 3mm distance
 between them and keeping a 1mm distance from the outlines of the static part geometry. Subsequently, our software
 creates separate meshes for 3D printing the sensor patches with conductive filament and the rest of the geometry with
 non-conductive filament.

Integrating the Floating Capacitor into the Moving Part: To integrate the floating capacitor into the moving part of the mechanism, the user first selects the 'Moving Part' option from the menu bar (Figure 11) and then selects the face onto which the floating capacitor should be integrated. The user next specifies the 'Center of Rotation' by clicking on the circular edge of the shaft. After the user confirms their selection, MechSense integrates the floating capacitor geometry with the moving part of the mechanism. It then subtracts it from the original geometry to generate separate files for the conductive and non-conductive parts for multi-material 3D printing.

Creating Traces: Users can integrate conductive traces to connect the sensor patches to the sensing board and microcontroller by using the built-in SolidWorks tools. By using the "3D Sketch" tool, the user can draw the lines for the conductive traces directly onto the geometry of the mechanism. The user draws conductive traces from the sensor patches to a convenient location on the mechanism to connect to the sensor board and microcontroller. Our MechSense plugin converts this path into a cylindrical geometry of 2mm diameter for 3D printing upon the user selecting the "Conductive Routing Path" button.

Exporting Geometry and Sensing Code: On export, the MechSense editor separates the meshes for the conductive and non-conductive parts and generates separate .stl files for each of these components. The .stl files can be loaded into a slicing software for 3D printing where each file gets assigned a non-conductive and a conductive filament, respectively.

6.2 3D Printing

750

751

752

753 754 755

756

757 758

759

760

763

770

779

780

To manufacture the mechanism with integrated sensors in one pass, users load both non-conductive and conductive filament into a multi-material FDM 3D printer. Below, we provide more details on the conductive filament we used, the 3D printer hardware and print settings, as well as considerations regarding build plate adhesion.

Conductive Material: We use Electrifi filament from Multi3d¹ since it has the highest conductivity (0.006 ohm.cm)
 among commercially available conductive thermoplastic filaments to date.

3D Printer Hardware and Print Settings: We use an Ultimaker S5 3D printer with a 0.6mm CC printcore from
 Ultimaker to accommodate the Electrifi conductive filament. The Electrifi filament is considerably softer than regular
 PLA filament and thus produces better print qualities with the use of a larger, abrasive material resistant printcore. To
 avoid grinding the softer conductive material during extrusion, we manually set the distance between the filament
 gears to the lowest feeder tension for our printer.

Build Plate Adhesion: Electrifi filament does not adhere well to glass substrates such as the print platform of our 3D printer. Thus, we first print a layer of PLA on which the conductive traces can be reliably printed with sufficient adhesion. This first layer is automatically generated by our MechSense plugin for SolidWorks. (Figure 12).

Nozzle Print Speed: We noticed that the Electrifi filament can smudge easily during printing. In particular, if two
 conductive areas, like the sensor patches, are close to each other, smudging can lead to short circuits between adjacent
 patches. This material behavior can be attributed to the low melting temperature of Electrifi, which can render it to be

¹https://www.multi3dllc.com/product/electrifi/

Fig. 12. Build plate adhesion can be improved by printing a layer of PLA filament underneath the conductive filament.

very soft if it is not given enough time to cool down sufficiently. To alleviate print failures due to smudging, we reduced our print speeds from 15 mm/s to 7mm/s when printing the sensor patches, wires, and the floating capacitor to allow the conductive filament to cool down before a new layer is printed on top.

6.3 Connecting Sensors and Streaming Data

Users connect their 3D printed mechanisms to the sensing board and upload code to the microcontroller that streams the raw sensor values to the serial port.

Connecting Sensors to the Sensing Board: Since Electrifi has a high contact resistance, it is difficult to connect
 wires to printed traces just by taping them on. Instead, we integrate wires directly into the conductive material of the
 sensors by heating up the tip of the wires with a soldering iron and pushing them into the Electrifi traces. The hot
 tip melts the filament which allows us to push the wires in. This technique brings a large part of the wire's surface in
 contact with the conductive filament. After cooling down, the wires are tightly and reliably connected to the printed
 sensor.

Uploading Code and Retrieving Sensor Values: Users next upload our code to a microcontroller that is connected
 to a capacitive sensing board (FDC2214). Our code collects the read sensor values from the board using an open source
 library² to read data from the sensing board and streams them with a time stamp to a computer and our Processing UI
 via the serial port. The FDC2214 board samples at a rate of 27ms for all sensor channels. Sensing Board: We use a

resonance-based capacitive sensor board that utilizes an RLC circuit (FDC2214, \$50). This board has four sequential channels for capacitive sensing, with a capacitive sensing resolution of up to 28 bits (range: 1pF to 250nF), and uses 3.3V logic.

6.4 MechSense UI to Process Raw Sensor Data

To make MechSense accessible to a wide range of users, we developed a Java/Processing implementation that supports users in performing the calibration step and converts the raw sensor data into angular position, direction of rotation, and rotational speed. To do the initial calibration, the user clicks on the button "Start Calibration". This loads a progress

832 Manuscript submitted to ACM

^{831 &}lt;sup>2</sup>https://www.arduino.cc/reference/en/libraries/fdc2214

Fig. 13. Calibrating and viewing MechSense sensor data through MechSense Sensor UI

bar that guides users to do 3 rotations. The system can track the progress by counting the global minima. When the calibration is completed, it reads the streamed data from the sensors and displays the angle, speed, and direction of rotation on the screen. The processing of the raw sensor data is implemented as a Java library that can be imported to any Java program and enables users to leverage MechSense for customized applications.

7 TECHNICAL EVALUATION

 We ran a technical evaluation to determine the error in the angular position estimation for different spacing between sensor patches, the effect of different sensor patch sizes, and the influence of capacitive objects (such as the user's hand) on the sensing accuracy. We compared all angular position estimation to a commercial rotational magnetic encoder (14 bit encoder, AS5048) that acts as our ground truth.

7.1 Spacing Between Sensors

To determine the influence of the separation distance between the sensor patches on the angular sensing accuracy, we conducted an experiment that evaluated the angular position estimations with sensor patches that have a separation of 3mm, 5mm, and 7mm.

Fig. 14. Evaluation Experiment Setup. (a) We connected a stepper motor with an integrated rotational encoder to a MechSense gear with an integrated floating capacitor. The gear was mounted on a base plate with three sensor patches. (b) The configuration of the sensor patches and the rotating element varied depending on the experiment configuration. We used the rotational encoder (14 bit encoder, AS5048) in the stepper motor (NEMA 17, 1.8° step size) as the ground truth.

Apparatus: We printed a contraption that can hold a removable base plate with three sensor patches. We also printed a shaft in the middle of the sensor patches that can hold a removable rotating gear with an integrated floating capacitor. The gear was held at a constant distance from the sensor patches by adding a 1mm thick washer between the gear

The gear was held at a constant distance from the sensor patches by adding a 1mm thick washer between the gear and the base plate. We connected the gear to an axle that was mounted to a stepper motor (NEMA 17, 1.8° step size) (Figure 14a). We evaluated 3 different spacings between sensor patches by printing 3 base plates with sensor patches separated by 3mm, 5mm, and 7mm (Figure 15) while keeping the total surface area constant at $765mm^2$. We also printed 3 matching gears whose floating capacitor area corresponded to the sensor patch area on the base plate. We printed each plate-gear pair three times to capture variations in the sensing accuracy caused by quality of the 3D print (3 conditions x 3 prints = 9 plate-gear pairs in total). For each plate-gear pair, we first connected all three sensor patches to our sensing board and then placed each of the base plates and the matching rotating gears into the contraption.

We also attempted to print a plate with 1mm separation but noticed that, due to the printing resolution of our current 3D printer, the conductive material layers were not perfectly separated and created a short circuit between plates.

Fig. 15. Separation distances between sensor patches ast 3mm, 5mm, and 7mm.

Procedure: We first calibrated each sensor by rotating the gear three times to generate the extrema estimations. After that, we captured the raw sensor data for each plate-gear pair for 50 rotations at a speed of 10 RPM with micro-stepping, and used our computational model to convert the read data into the angular position estimation. Finally, we compared our estimate to the ground truth of the rotational encoder in the connected stepper motor and computed the error.

Results: Figure 16 shows the results of the experiment. All 9 plate-gear pairs show similar median errors between 1.1°-1.5°. The 75th Percentile of all captured error values reached up to 3% error across all experiment conditions, and the box plot whiskers (which are at the value of the 75th Percentile + 1.5 * range between the 25th and 75th Percentile) reached up to 7° for the 3mm PLA separation, up to 5.9° for the 5mm PLA separation, and up to 5.5° for the 7mm PLA separation. However, we found an increasing amount of outliers for larger PLA separations. While the 3mm PLA separation had nearly no outliers, with one print having 0.28% of the captured data in the outlier range and an error of up to 7°, the 5mm PLA separation prints had a maximum of 1.89% of sensor values as outliers within a single print, and a maximum error of approximately 8°. The 7mm print's error value reached a maximum of around 13° for 2.57% of its sensor data as outliers. This increasing error can be explained by the change in the signal's shape for larger PLA separations.

936 Manuscript submitted to ACM

 Anon.

Figure 17 shows the sensor signal for 3mm, 5mm, and 7mm PLA separation overlaid on top of each other. As the distance between adjacent sensor patches is increased, the shape of the signal becomes wider at the maxima (where the floating capacitor has a 50% overlap with two sensor patches). Thus, our approximation polynomial, which we derived from a sensor that had 3mm separation, does not approximate the signal of the 5mm and 7mm separation samples well near the maxima. Since the change is signal shape is still small, it only mildly effects the mean error value of our angular position estimation and leads to a detectable increase in outliers.

Fig. 16. Error values retrieved from the angular position estimation for 50 rotations across 3 different prints for 3mm, 5mm, and 7mm PLA separation gaps between adjacent patches. The data demonstrates similar median error values (1.1°- 1.5°), but also shows an increase in the number of outlier values as the separation distance increases.

7.2 Effect of Sensor Size on Sensing Accuracy

 To determine the influence of sensor patch size on the angular position estimation error, we conducted an experiment that evaluated the angular position estimation with sensor patches that had a surface area of $765mm^2(100\%)$, $450mm^2(60\%)$, and $178mm^2(20\%)$.

Apparatus: We used the same experimental setup as in section 7.1, but this time we printed gears of different sizes with corresponding smaller sensor patch surface areas. We evaluated 3 different sizes: $765mm^2$ (100%), $450mm^2$ (60%), and $178mm^2$ (20%) (Figure 18). We used a 3mm separation distance between sensor patches. We printed gears and base plates with matching floating capacitor and sensor patch areas three times for each combination (3 conditions x 3 prints = 9 plate-gear pairs in total). Since the $765mm^2$ sized gear with 3mm separation between sensor patches is identical to the experiment setup of section 7.1 for the 3mm separation case, we reused the captured sensor data in this experiment and compare it to the sensor patches with $450mm^2$, and $178mm^2$ patch surface area.

Fig. 17. Comparison of the signal shape at a maximum for 3mm, 5mm, and 7mm PLA separation. We see a slight decreasing slope of the signal for increasing PLA separation distances.

Fig. 18. Different sensor patches sizes. We evaluated the angular position estimation error for sensors with a total surface area of $178 mm^2$ (20%), $450 mm^2$ (60%), and $765 mm^2$ (100%).

Procedure: For each plate-gear pair we conducted an initial calibration by rotating the gears three times to get an estimation for the extrema. Finally, we rotated the gears at 10 RPM for 50 rotations each. We recorded the signal for each of the sensor patches and used our computational model to convert the raw sensor data into the angular position estimation. Finally, we used the rotational encoder in our stepper motor to generate the ground truth that we compare the sensor values to.

Results: Figure 19 shows the results of the experiment. We found that the mean error across all conditions was similar with 1.4° (765mm²), 2.0° (450mm²), and 2.1° (178mm²). However, we also observed a growing amount of outliers for smaller sensor sizes where the 450mm² showed in the worst case 1.74% of the sensor data being outliers with a maximum error of 18.2°, and for the 178mm² we found 4.1% of the sensor data being outliers with up to 18.9° error in the worst case. The increasing error for smaller sensor sizes can be explained by the change of signal strength of the captured data. Figure 20 shows the sensor data for multiple rotation for all three sensor sizes. One can see that the amplitude of the signal decreases for smaller sensor sizes. This makes the sensor values at extrema less distinct, i.e. the change in capacitance becomes smaller, and may lead to misdetections at the extrema.

Fig. 19. Angular position estimation error for sensor patches of 765mm², 450mm², 178mm² surface area. The median error stays in a similar range to the 765mm² sensor patch with a slight increase to 1.9° (450mm²), and 2.1° (178mm²). However, the amount of outliers with errors up to 18° increase for 1.74% of the sensor values for the 450mm² patch, and up to 4.1% of the sensors, with errors reaching 19°, for the 178mm² patch in the worst case.

Fig. 20. Sensor Signal for patches with a total area of 765mm², 450mm², and 176mm². Smaller sensor patches produce a smaller overall capacitance which makes them susceptible to external noise. For example, the extrema of the sensor patch with 176mm² show a more fluctuations than the extrema of the 765mm² patches.

1114 7.3 Effect of User's Hand Proximity on MechSense

We evaluated the angular position estimation error with a user's hand at 5 different distances from the MechSense encoder.

Fig. 21. Experiment setup: user hand placed at different heights on top of rotating gear apparatus.

Apparatus: We used the same setup as in the previous evaluations but mounted a height-adjustable arm rest next to the MechSense encoder (Figure 21). We added the arm rest to provide the user a stable support to keep their hand at a Manuscript submitted to ACM

constant distance from the MechSense encoder over a longer period of time. The sensor patches had an area of 765mm² and a PLA separation of 3mm between each patch.

Procedure: We calibrated the sensor by rotating the gear three times without a user's hand in proximity. Next, we captured the angular position estimation error by rotating the gear 50 times at 10RPM with a user's hand at a fixed distance from the MechSense encoder. We asked a participant to place their hand on the arm rest which we set to a custom height and let them hover with their hand above the rotating gear. We repeated this procedure for 5 gear-hand distances: 50cm, 20cm, 10cm, 5cm, and 0cm (direct touch on the base plate). We measured the distance between the hand and the gear with a ruler and asked the participant to keep the hand as steady as possible. Each experiment took 5 minutes. In addition, we ran one experiment with no hand in proximity to the MechSense encoder to generate a baseline that allowed us to compare the error values with a hand in proximity.

Results: We observe a similar mean error when the user's hand is at a distance of 50cm, 20cm, and 10cm from the MechSense encoder.

Fig. 22. Angular position estimation error with a user's hand in 5 distances above the rotating gear: 50cm, 20cm, 10cm, 5cm, and directly touching the 3D printed base, and one additional experiment with no user in proximity as a baseline. We observed minimal impact of a user's hand between 50cm to 10cm distance similar to our baseline. However, we noticed an increasing mean error and a larger amount of outlier for 5cm distance and for direct touch.

Fig. 23. Capacitance change in presence of a user's hand. We observe a global increase in capacitance in presence of the user's hand (5cm distance). The capacitance change leads to an increase in angular position estimation error in particular in the first few rotations until our system updated the new values for the extrema and our polynomial fitting.

The amount of outliers in these cases also remains small with 0.064% (50cm), and 0.042% (20cm) of the sensor values being outlier with a maximum error of almost 8°. The 10cm distance had a slightly larger amount of outliers (0.6%) with a maximum error of 15.6°. However, the mean error and amount of outliers increased when the user's hand was at a distance of 5cm and directly touching the base with the sensor patches. We measured a mean error of 2.1 (5cm) and 3.3 (direct touch). The amount of outliers increased to 3.24% (maximum error: 47.8) of the sensor data for 5cm, and to 9.76% (maximum error: 58.3) of the total sensor data when directly touching the base with the sensor patches. This indicates that MechSense encoders experience increased angular position estimation errors in the presence of a user's hand below 10cm distance. This is, however, expected as a user's hand introduces noise by changing the capacitance of the sensor system. Figure 23 shows the change in capacitance when a user's hand is present at 5cm distance. The capacitance values show a global increase that leads to detection errors of the extrema in our computational model. However, the error rate decreases as our model updates the magnitude of the extrema after several rotations to the new signal values. Thus, the majority of outliers reported in Figure 22 originate from the first few rotations until our system can compensate for the capacitance change.

1237 8 LIMITATIONS AND FUTURE WORK

We next discuss limitations of our work and potential avenues for future research.

Generating Conductive Traces: In our current user interface, the user has to manually route the traces, i.e. draw the
 path from the sensor patch to a location where they would like to connect the trace of the sensor patch to the sensing
 board. For future work, we plan to auto-route the traces.

Other Sensor Layouts: We also experimented with alternative sensor layouts (Figure 24). The first alternative sensor layout used only two sensor patches (Figure 24a) and created a signal profile similar to the three sensor patch layout. It
 only required two sensors on the sensing board, which allowed us to connect more mechanisms without requiring
 Manuscript submitted to ACM

additional multiplexing. One drawback is that this sensor layout does not allow us to sense the direction of rotation since three sensor signals are required to eliminate ambiguity. The second alternative sensor layout (Figure 24b) used a double-sized floating capacitor on the moving part of the mechanism. This produces a signal with three maxima corresponding to 25%, 50%, and 25% overlap as the floating capacitor moves across the sensor patch. For future work, we plan to further explore this sensor patch design to extract additional features based on slopes and intersections. Finally, we considered a gradient sensor layout (Figure 24c) in which the floating capacitor area increases. This allows us to extract the direction of rotation from one sensor patch only. However, we found that 3D printing the thin part of the gradient sensor patch was difficult to achieve when the rotating geometry was small.

Fig. 24. Alternative sensor layouts: (a) two sensor patches on the static part, (b) double-sized floating capacitor on the moving part, (c) gradient floating capacitor on the moving part.

Simulation of Sensor Signals: While we only used the sensor signal simulation in section 4.2 to confirm the waveform of our chosen sensor layout, we can also use the simulation to predict the sensor signal of arbitrary geometries and arrangements of sensor patches. It thereby allows for rapid exploration of the parameter space, including the sensor patch shape and size and the dielectric strengths of the insulating material, which we could use in future work to enhance our computational prediction model for angular position accuracy.

Compensating for Proximity of a User's Hand: We showed in our technical evaluation that the presence of a user's hand can introduce high errors in the first few rotations before our system can compensate for the change in capacitance induced by the user's hand. In future work, we want to compensate for such noise instantly by taking into account the Manuscript submitted to ACM

change in capacitance for our global minimum. Since the increase in capacitance in proximity to a user's hand behaves
 similar to a global lift up of the original sensor signal, it might be possible to estimate this lift up by computing the
 difference of the global minimum value that we got from the initial calibration and the actual global minimum when
 the user's hand is present. Finally, we subtract this difference from all sensor values to obtain a signal that is close to
 our original signal. Since at least one sensor patch is in the global minimum at any time, this compensation could be
 computed almost instantly.

Sampling Rate & Speed Limitation: Our sensing board has a sampling rate of 27ms per sample across all sensor channels which generates sensor data that is fairly close to the true capacitance of the system at low rotation speed. However, as the speed of rotation increases, the produced sensor data profile becomes less smooth with multiple linear segments. Figure 25 shows a sensor profile at 200RPM. One can see that not all extrema are perfectly captured at that rotation speed. These inaccuracies will introduce errors in our polynomial fitting and lead to an increasing angular position estimation error at a higher rotation speed. Such application scenarios that require high rotation speed will also require to utilize a sensing board that offers a higher sampling rate.

Fig. 25. Sampling of the sensor signal at 200RPM at a sampling rate of 27ms. As less samples become available for a full rotation,
 the sensor signal becomes less smooth showing rather linear segments. This deviation from the our approximation polynomial will
 lead to a higher angular position estimation error. Application scenarios that require a high rotation speed will also require using a
 sensing boards that supports a higher sampling rate.

9 CONCLUSION

In this paper, we investigated how to integrate sensing into rotating mechanisms via conductive multi-material 3D printing to enable them to sense their direction of rotation, speed, and angular position. We showed how a sensor layout that integrates sensors with the static part of a mechanism and a floating capacitor with the moving part of the mechanism generalizes across different rotational mechanisms, such as gears, linkages, and wheels. We presented an Manuscript submitted to ACM

editor that facilitates the integration of the sensors with the mechanism geometry, and that exports the 3D printable
 files. We also contribute a Java/Processing tool that uses our computational model to convert the raw sensor data into
 angular position estimation, direction and speed of rotation. We evaluated the angular position estimation error for
 different spacing between sensors, the size of the sensor patches, and the influence of the proximity of a user's hand
 near a MechSense encoder. For future work, we plan to explore how to increase the robustness of our sensing method

to external noise, and develop 3D printable sensors that can monitor other types of mechanisms.
 1360

REFERENCES

1361

1362

- [1] Jesse Burstyn, Nicholas Fellion, Paul Strohmeier, and Roel Vertegaal. 2015. PrintPut: Resistive and Capacitive Input Widgets for Interactive 3D
 Prints. In *Human-Computer Interaction INTERACT 2015*, Julio Abascal, Simone Barbosa, Mirko Fetter, Tom Gross, Philippe Palanque, and Marco
 Winckler (Eds.). Springer International Publishing, Cham, 332–339.
- [2] V. Ferrari, A. Ghisla, D. Marioli, and A. Taroni. 2004. Capacitive angular-position sensor with electrically-floating conductive rotor and measurement redundancy. In *Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510)*, Vol. 1. 195–200 Vol.1. https://doi.org/10.1109/IMTC.2004.1351027
- [3] P.L. Fulmek, F. Wandling, W. Zdiarsky, G. Brasseur, and S.P. Cermak. 2002. Capacitive sensor for relative angle measurement. *IEEE Transactions on Instrumentation and Measurement* 51, 6 (2002), 1145–1149. https://doi.org/10.1109/TIM.2002.808052
- [4] M. Gasulla, Xiujun Li, G.C.M. Meijer, L. van der Ham, and J.W. Spronck. 2002. A contactless capacitive angular-position sensor. In SENSORS, 2002
 [371 IEEE, Vol. 2. 880–884 vol.2. https://doi.org/10.1109/ICSENS.2002.1037224
- [5] Ben Greenspan, Eric M. Gallo, and Andreea Danielescu. 2022. FlexKeys: Rapidly Customizable 3D Printed Tactile Input Devices with No Assembly
 Required. https://doi.org/10.48550/ARXIV.2203.00757
- [6] Liang He, Jarrid A. Wittkopf, Ji Won Jun, Kris Erickson, and Rafael Tico Ballagas. 2022. ModElec: A Design Tool for Prototyping Physical
 Computing Devices Using Conductive 3D Printing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 4, Article 159 (dec 2022), 20 pages.
 https://doi.org/10.1145/3495000
- [7] Bo Hou, Zhang Tian, Cao Li, Qi Wei, Bin Zhou, and Rong Zhang. 2017. A capacitive rotary encoder with a novel sensitive electrode. In 2017 IEEE SENSORS. 1–3. https://doi.org/10.1109/ICSENS.2017.8234143
- [8] Vikram Iyer, Justin Chan, and Shyamnath Gollakota. 2017. 3D Printing Wireless Connected Objects. ACM Trans. Graph. 36, 6, Article 242 (nov 2017), 13 pages. https://doi.org/10.1145/3130800.3130822
- [9] Cedric Honnet Jack Forman Stefanie Mueller. Jun Gong, Olivia Seow. 2021. MetaSense: Integrating Sensing Capabilities into Mechanical Metamaterial.
 Association for Computing Machinery, New York, NY, USA.
- [10] M. Karali, A. T. Karasahin, O. Keles, M. Kocak, and M. A. Erismis. 2018. A new capacitive rotary encoder based on analog synchronous demodulation.
 Electrical Engineering 100 (2018), 975–1983. https://doi.org/10.1007/s00202-018-0677-9
- [11] Kunihiro Kato, Kaori Ikematsu, and Yoshihiro Kawahara. 2020. CAPath: 3D-Printed Interfaces with Conductive Points in Grid Layout to Extend
 Capacitive Touch Inputs. Proc. ACM Hum.-Comput. Interact. 4, ISS, Article 193 (Nov. 2020), 17 pages. https://doi.org/10.1145/3427321
- [12] Danny Leen, Raf Ramakers, and Kris Luyten. 2017. StrutModeling: A Low-Fidelity Construction Kit to Iteratively Model, Test, and Adapt 3D Objects.
 In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (Québec City, QC, Canada) (UIST '17). Association for Computing Machinery, New York, NY, USA, 471–479. https://doi.org/10.1145/3126594.3126643
- [13] Karola Marky, Martin Schmitz, Verena Zimmermann, Martin Herbers, Kai Kunze, and Max Mühlhäuser. 2020. 3D-Auth: Two-Factor Authentication with Personalized 3D-Printed Items. In *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems* (Honolulu, HI, USA) (*CHI* ¹³⁰⁰ '20). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376189
- [14] Karola Marky, Andreas Weiß, Florian Müller, Martin Schmitz, Max Mühlhäuser, and Thomas Kosch. 2021. Let's Frets! Mastering Guitar Playing with
 Capacitive Sensing and Visual Guidance. In *Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems* (Yokohama,
 Japan) (*CHI EA '21*). Association for Computing Machinery, New York, NY, USA, Article 169, 4 pages. https://doi.org/10.1145/3411763.3451536
- [15] Thijs Jan Roumen, Willi Müller, and Patrick Baudisch. 2018. Grafter: Remixing 3D-Printed Machines. In *Proceedings of the 2018 CHI Conference* on *Human Factors in Computing Systems* (Montreal QC, Canada) (*CHI '18*). Association for Computing Machinery, New York, NY, USA, 1–12.
 https://doi.org/10.1145/3173574.3173637
- [16] Valkyrie Savage, Andrew Head, Björn Hartmann, Dan B. Goldman, Gautham Mysore, and Wilmot Li. 2015. Lamello: Passive Acoustic Sensing for Tangible Input Components. In *Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems* (Seoul, Republic of Korea) (*CHI '15*). Association for Computing Machinery, New York, NY, USA, 1277–1280. https://doi.org/10.1145/2702123.2702207
- [17] Martin Schmitz, Martin Herbers, Niloofar Dezfuli, Sebastian Günther, and Max Mühlhäuser. 2018. Off-Line Sensing: Memorizing Interactions in Passive 3D-Printed Objects. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI '18).
 [401 Association for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/3173574.3173756
- [18] Martin Schmitz, Mohammadreza Khalilbeigi, Matthias Balwierz, Roman Lissermann, Max Mühlhäuser, and Jürgen Steimle. 2015. Capricate: A
 Fabrication Pipeline to Design and 3D Print Capacitive Touch Sensors for Interactive Objects. In *Proceedings of the 28th Annual ACM Symposium*

1405		on User Interface Software amp; Technology (Charlotte, NC, USA) (UIST '15). Association for Computing Machinery, New York, NY, USA, 253–258.
1406		https://doi.org/10.1145/2807442.2807503
1407	[19]	Martin Schmitz, Florian Müller, Max Mühlhäuser, Jan Riemann, and Huy Viet Viet Le. 2021. Itsy-Bits: Fabrication and Recognition of 3D-Printed
1408		Tangibles with Small Footprints on Capacitive Touchscreens. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
1409		(Yokohama, Japan) (CHI '21). Association for Computing Machinery, New York, NY, USA, Article 419, 12 pages. https://doi.org/10.1145/3411764.
1410	[00]	$\frac{3445502}{10}$
1411	[20]	Martin Schmitz, Jurgen Steimle, Jochen Huber, Nilootar Deztuli, and Max Muhihauser. 2017. Flexibles: Deformation-Aware 3D-Printed Tangibles for
1412		Association for Computing Machinery, New York, NY, USA, 1001–1014. https://doi.org/10.1145/3025453.3025663
1413	[21]	Tatyana Vasilevitsky and Amit Zoran. 2016. Steel-Sense: Integrating Machine Elements with Sensors by Additive Manufacturing. In Proceedings of
1414 1415		the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI '16). Association for Computing Machinery, New York, NY, USA, 5731–5742. https://doi.org/10.1145/2858036.2858309
1416	[22]	Hewen Wang, Kai Peng, Xiaokang Liu, Zhicheng Yu, and Ziran Chen. 2021. Design and Realization of a Compact High-Precision Capacitive Absolute
1417		Angular Position Sensor Based on Time Grating. <i>IEEE Transactions on Industrial Electronics</i> 68, 4 (2021), 3548–3557. https://doi.org/10.1109/TIE.2020.
1418	[23]	29//340 Clement Theng Jacous Kim Daniel Leithinger Mark D. Cross and Ellen Vi-Luan Do. 2010. Mechamognets: Designing and Enhricating Hantis and
1419	[23]	Functional Physical Inputs with Embedded Magnets. In Proceedings of the Thirteenth International Conference on Tangible Embedded and Embodied
1420		Interaction (Terme Arizona USA) (TEI '19) Association for Computing Machinery New York NY USA 325-334. https://doi.org/10.1145/3294109
1421		
1422	[24]	Dezhi Zheng, Shaobo Zhang, Shuai Wang, Chun Hu, and Xiaomeng Zhao. 2015. A Capacitive Rotary Encoder Based on Quadrature Modulation and
1423		Demodulation. Instrumentation and Measurement, IEEE Transactions on 64 (01 2015), 143-153. https://doi.org/10.1109/TIM.2014.2328456
1424		
1425		
1426		
1427		
1428		
1429		
1430		
1431		
1432		
1433		
1434		
1435		
1436		
1437		
1438		
1439		
1440		
1441		
1442		
1443		
1444		
1445		
1446		
1447		
1448		
1449		
1450		
1451		
1452		
1453		
1454		
1455		