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Multi-solution optimization (MSO)

Finding multiple optima of an optimization problem is a ubiquitous task, either because there are many
equally-performant global optima or due to the fact that the optimization objective does not capture user
preferences precisely.

We definemulti-solution optimization (MSO) as follows:

Given a family of non-convex differentiable {fτ : X → R}τ∈T , find all minima of fτ . Each function fτ

might contain multiple local and global minima.

Can we do better than random initial guesses plus gradient-based optimization from each initial guess?

Can we apply machine learning to generalize to an unseen τ ′ at test time?

Example: object detection in images

Consider the task of object detection (ignoring labels):

X ⊂ R4: x = (w, h, cx, cy) denotes a bounding box.
T is the space of images.
fτ (x) = minKτ

i=1
∥∥bτ

i − x
∥∥

1, where {b
τ
i }

Kτ
i=1 are the set of GT bounding boxes in image τ ∈ T .

At test time, we only have access to a test image τ ′ but not its GT bounding boxes.

Proximal-point algorithm (PPA)

For a fixed λ > 0, the proximal operator of fτ is defined as

prox(x; τ ) := arg min
y

{
fτ (y) + λ

2
∥y − x∥22

}
.

If fτ is λ-weakly convex (fτ + λ/2∥· − x∥22 is strongly convex), then prox is uniquely defined.
With initial point x0, the proximal-point algorithm (PPA) iterates, for k ∈ Z≥0,

xk+1 := prox(xk; τ ).

When fτ is locally indistinguishable from a convex function, then with reasonable stopping criterion, PPA
converges linearly to a localminimumof fτ , even if prox is approximated [6]. Such convergence canbe faster
than gradient descent [3].

How can we approximate the proximal operator without solving an inner optimization at each evaluation?

If we start at a different initial guess or optimize for a similar but different τ , can we “reused” the approximated
proximal operator?

Learning proximal operators

Wepropose to learn the proximal operators in an end-to-end fashion for all x ∈ X , τ ∈ T :

min
Φ:X×T →X

Ex∼µ
τ∼ν

[
fτ (Φ(x, τ )) + λ

2
∥Φ(x, τ )− x∥22

]
, (1)

where µ is a prior onX (e.g. a uniform distribution onX ) and ν is the training data on T . We parameterize
Φ : X × T → X using a residual neural network and trainΦ by SGD.

For problems where T is structured (images or 3D point clouds), we first embed τ using a suitable encoder
before passing it toΦ.

At test time, for an unseen τ ′with objective fτ ′, we sample a batch of x ∼ µ and run a few steps (≤ 10) of
PPA by xk+1← Φ(xk; τ ′) to obtain multiple solutions.

Can viewΦk(; τ ′)#µ as a generativemodel fromwhich local minima can be sampled. Hence we can
represent arbitrary number of solutions even when the set of minima is continuous.

Global convergence of training

How easy is it to train Φ with loss (1)? Based on Kawaguchi and Huang [4], we show theoretically that the
proximal term in (1) conveniently elevates the convexity of fτ to obtain global convergence of training.

Suppose the training dataset is S = {(xi, τi)}ni=1 ⊂ X × T of size n. Define the discretized training loss
of (1) to be,

L(Φ) := 1
n

n∑
i=1

[
fτi(Φ(xi, τi)) + λ

2
∥Φ(xi, τi)− xi∥22

]
.

Suppose for any τ ∈ T , the objective fτ ∈ C1(X ) is ξ-weakly convex and∇fτ is ζ-Lipschitz with ξ <
λ. Then for any common neural network with Ω̃(n) total parameters, with high probability, gradient
descent on its weights will eventually reach theminimum lossminΦ L(Φ).
The number of iterations needed to achieve ϵ > 0 training error is O((λ + ζ)/ϵ). When this occurs,
the mean-squared error of the learned proximal operator compared to the true one isO(2ϵ/(λ−ξ)) on
training data.

Application: non-convex sparse recovery

Given measurement y generated from y = Ax∗ + e where e is noise, sparse recovery aims at recovering a
sparse x∗ from y. We consider a non-convex sparse recovery formulation that minimizes

f(α,p)(x) = 1
2
∥Ax− y∥22 + α∥x∥pp,

for α > 0, p ∈ (0, 1). Compared to LASSO (p = 1), non-convex ℓp norms require milder condtions under
which the global optimia of the objective are the desired sparse x∗ [1, 2].

Figure 1. Results for p = 1/2. Objective (left) and histogram of foundminima (right). PD: gradient descent. PGD: proximal
gradient descent. POL: proximal operator learning (proposed).

Application: 3D symmetry detection

Given a surfaceMτ inR3, we define, for a reflection plane x = (n, d)with normal n and intercept d,

fτ (x) = Ep∼Mτ
[sτ (Rx(p))],

whereRx is the reflection transformation corresponding tox, and sτ (p) := minq∈Mτ
∥p− q∥2 is thedistance

field.

Compared toexistingmethods thateither requireground truth symmetriesordetectonly a small numberof
symmetries, ourmethodfindsarbitrarynumberof symmetries includingcontinuousonesandcangeneralize
to unseen shapes.

Figure 2. Each reflection is represented as a colored line segment representing the normal of the reflection plane with one
endpoint on the plane. Pink indicates better objective values, while blue indicates worse.

Application: object detection in images

Applying the MSO formulation for object detection from the earlier section, we are able to encode the dis-
tribution of bounding boxes in the learned proximal operator without needing to predict confidence scores
or a fixed number of boxes, unlike existing methods.

Figure 3. Left: metrics compared to baselines and Faster R-CNN. Right: First 4 iterations of PPA using the learned proximal
operator on 20 randomly initialized boxes (leftmost column). Only a few iterations are needed for the boxes to form distinctive
clusters.

Compared to the Faster R-CNN [5], we achieve slightly worse results with 39.7% fewer network param-
eters. While Faster R-CNN contains highly-specialized modeuls, we simply feed the image feature vector
output by ResNet-50 to the proximal operator network. Incorporating regional information in our frame-
work is a future direction.
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