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Abstract— Simulation has the potential to transform the
development of robust algorithms for mobile agents deployed
in safety-critical scenarios. However, the poor photorealism and
lack of diverse sensor modalities of existing simulation engines
remain key hurdles towards realizing this potential. Here, we
present VISTA, an open source, data-driven simulator that
integrates multiple types of sensors for autonomous vehicles.
Using high fidelity, real-world datasets, VISTA represents and
simulates RGB cameras, 3D LiDAR, and event-based cameras,
enabling the rapid generation of novel viewpoints in simulation
and thereby enriching the data available for policy learning
with corner cases that are difficult to capture in the physical
world. Using VISTA, we demonstrate the ability to train and
test perception-to-control policies across each of the sensor types
and showcase the power of this approach via deployment on
a full scale autonomous vehicle. The policies learned in VISTA
exhibit sim-to-real transfer without modification and greater
robustness than those trained exclusively on real-world data.

I. INTRODUCTION

Simulation has emerged as an essential tool for advancing
new algorithms in robot perception, learning, and evalua-
tion [1]–[3]. For safety-critical domains in particular, such as
for autonomous vehicles, experience in simulation is often
significantly faster and safer than direct operation in the
physical world. Simulation affords the potential to rapidly
synthesize novel data for training, including challenging edge
cases difficult to capture in the real world [1], [2]. An
agent’s exposure to edge cases during training is critical
to achieving robustness to out-of-distribution events. Fur-
thermore, high-fidelity, in-simulation testing could improve
an agent’s performance when deployed into safety-critical,
human-centric environments. Thus, simulation could enable
the development of algorithms and models better equipped
to handle the diverse challenges of the physical world,
facilitating their deployment on embodied mobile agents.

Despite the potential of simulation, the stark lack of pho-
torealism and a paucity of diverse simulated sensor represen-
tations have remained crucial barriers towards realizing this
promise. Data-driven simulation, unlike traditional model-
based simulation, synthesizes novel viewpoints directly from
real data and has emerged as an approach to overcome
the photorealism and sim-to-real gap [4]. However, issues
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Fig. 1: VISTA 2.0 is an open-source data-driven simulator
for multi-sensor perception of embodied agents. Leverag-
ing data of the real-world, VISTA synthesizes ego-agent
viewpoints as their dynamics unroll novel trajectories in the
environment. Sensors are efficient and high fidelity for online
perception learning, evaluation, and sim-to-real deployment.

in scaling simulation engines to multiple sensor types for
online perception learning remain. Because embodied agents
benefit from rich perception [5], integrating multiple sensor
modalities could facilitate adaptation to a wide variety of en-
vironmental conditions (e.g., combining LiDAR and camera
feedback to stay on the road in low visibility lighting). There
remains a need for unified, flexible, and open-source data-
driven simulation engines to fuel the development of new
algorithms for embodied agent learning and evaluation.

In this paper, we present VISTA 2.0, a multi-sensor, data-
driven engine for autonomous vehicle simulation, perception,
and learning (Fig. 1). VISTA synthesizes novel viewpoints
consistent with each sensor representation, simulates agents
in synthesized scenarios, and supports large scale learning
and testing environments. Our work prioritizes a lightweight
API for processing existing real-world datasets, operating
only on local viewpoint changes to achieve efficient com-
putational rendering and low memory costs.

We develop novel view synthesis capabilities for three
distinct sensors: 2D RGB cameras, 3D LiDARs, and asyn-
chronous event-based sensors. Using VISTA to generate data,
we train end-to-end (i.e., perception-to-control) policies us-
ing using guided policy learning (GPL) [6] and demonstrate
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direct policy transfer onto a full-scale autonomous vehicle.
Further, our results highlight the importance of simulation
in two key contexts. First, we show that simulating novel
viewpoints can drastically improve the robustness of learned
policies and a vehicle’s ability to recover from challenging
off-orientation positions. Second, for sensors which conflate
the ego-motion of the agent with the control decision (e.g.,
event-based cameras), we find that existing state-of-the-art
imitation learning (IL) approaches [7] cannot achieve closed-
loop success using only real-world data. Using VISTA,
we not only uncover this issue, but also overcome it by
decoupling the learning signal within VISTA to successfully
train closed-loop controllers from event-based sensors.

In summary, the contributions of this paper are as follows:
1) VISTA 2.0, an open-source, multi-sensor, data-driven

simulator for learning and evaluating autonomous ve-
hicle perception and control.

2) A framework for translating real-world data to a
simulated perception-control API spanning a diversity
of compatible environments with varying complexity,
lighting, weather, and road types.

3) End-to-end autonomous vehicle control policies using
each sensor type, learned within VISTA and directly
deployed on a full-scale vehicle. Learned policies
exhibit direct sim-to-real transfer and improved robust-
ness than those trained solely on real-world data.

II. RELATED WORK

Cross-Sensor Transfer: Numerous works consider aug-
menting sensing modalities and simulating different modali-
ties via, often learned, sensor fusion. For example, in Monoc-
ular Depth Prediction approaches, a neural network is typi-
cally trained to act as a depth sensor using monocular image
data [8], [9]. Similarly, Depth Completion combines cameras
with sparse depth from LiDAR to simulate a dense depth
sensor [10], [11]. In event-based vision, recent work combine
the use of classical and event-based cameras for simulating
higher frame-rate cameras [12], depth predictions [13], [14],
or focus on translating between these two modalities [15]–
[18]. We draw inspiration from these works but focus on a
unified simulation framework that jointly simulates a diverse
set of sensors while supporting novel view synthesis.

Simulation: The use of simulation for learning and
robotics has exploded in recent years. Model-driven simu-
lators rely on predefined models of scenery and underlying
physics [19]–[23]. Several model-based engines that focus
on high quality visual appearances are widely used for
autonomous vehicles [1], [24] and drones [25], [26]. These
engines rely on heavily engineered video-game rendering
platforms, but still lack the photorealism necessary for direct
policy transferability. In contrast, data-driven simulators [2],
[4], [27]–[30] present greater photorealism by leveraging real
data to reconstruct virtual worlds of the scene before synthe-
sizing novel views. Our work follows this line of research
with a focus on local scene synthesis for scalability and on
learning transferable policies for embodied AI research.

Driving Policy Learning: While policy learning for driv-
ing using real-world data is largely restricted to IL [31]–
[35], learning in simulation allows for greater algorithmic

flexibiltiy ranging from IL [5], [36], [37], to RL [1], [4], [38],
[39], and GPL [6], [40]. Evaluation of trained policies in
closed-loop simulation [5], [31], [36], [40]–[42] also presents
benefits over open-loop evaluation [7], [32], [43]. Similarly,
our work leverages simulation for edge-case training data
generation, and closed-loop evaluation before deployment.

III. MULTI-SENSOR SIMULATION

A. Background
VISTA 1.0 [4] is a data-driven simulator that synthesizes

RGB images at novel viewpoints around the local trajectory
of a dataset. The precollected image sequence represents a
sparsely sampled representation of a continuous trajectory
traversed by a vehicle in the physical world. Any novel
viewpoints can be associated with a frame with the closest
pose and rerendered to the virtual agent’s position. The
overall pipeline of VISTA is: (1) update vehicle state with
a continuous kinematic model, (2) retrieve the closest frame
in the dataset with respect to the current pose, (3) project
the frame into 3D space to reconstruct the scene, and (4)
reproject back into the ego-agent’s point-of-view. Please refer
to [4] for details. The goal of VISTA 2.0 is to extend
simulation to other modalities in a data-driven manner,
namely synthesizing novel sensor measurements of LiDAR
and event data locally around the dataset, and to leverage
and release this platform for robust perception learning.

B. LiDAR synthesis
LiDAR sensors play a central role in modern autonomy

pipelines due to their accuracy in measuring geometric depth
information and robustness to environmental changes like
illumination. Unlike cameras which return structured grid-
like images, the LiDAR sensor captures a sparse pointcloud
of the environment. Here, every point is represented by
a 4-tuple: (x,y,z, i), where (x,y,z) is the position of the
point in 3D Cartesian space and i is the intensity feature
measurement of that point. Given a virtual agent’s position
in the environment, along with a relative transformation
(rotation R ∈ R3×3, and translation t ∈ R3) to the nearest
human collected pointcloud, Ψ, the goal of VISTA is to
synthesize a novel LiDAR pointcloud, Ψ′, which appears to
originate from the virtual agent’s relative position.

Since Ψ is represented in 3D Cartesian space, a naive
solution would be to directly apply the relative transfor-
mation of the agent (R, t) to Ψ as a rigid transformation:
Ψ′ = RΨ+ t. However, this approach will fail for several
reasons. The pointcloud obtained from a LiDAR sensor has a
specific ring pattern pattern originating at the sensor’s optical
center. Applying a rigid transformation to the points will not
only transform the individual points, but in doing so, also
transform and break the ring structure inherently defining
the sensor’s location. Instead, to preserve the sensor structure
we must recast LiDAR rays, from the new sensor location,
into the scene and estimate new readings. Furthermore, the
naively transformed pointcloud will very likely have points
which may have been visible in the original scan, but become
occluded in the new viewpoint and thus need to be rejected to
maintain line-of-sight properties of the sensor. To overcome
these issues, we (1) cull the now occluded points, (2) create a
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Fig. 2: Multi-sensor simulation. (A) Virtual agent dynamics unroll trajectories in a data-driven environment, at each time
rendering a sensor observation from the novel viewpoint at that time. Three types of perception sensors are able to be
synthesized including images from RGB cameras (B), 3D pointclouds from LiDAR (C), and continuous differential events
(D). Examples of novel viewpoint synthesis are visualized for each sensor.

dense representation of the sparse pointcloud, and (3) sample
from the dense representation according to a sensor-specific
prior. We outline the algorithm below in detail.

First, we implement a GPU-accelerated culling technique
to operate on our sparse transformed pointcloud, Ψ′. We start
by projecting Ψ′ into 2D polar coordinates,

α = arctan
(

Ψ′y
Ψ′x

)
; β = arcsin

(
Ψ′z
d

)
; d =

∥∥Ψ
′∥∥

2 (1)

where (α,β ) are the yaw and pitch angles of the rays
connecting each of the points, and d are the distances along
each ray. Now, the entire pointcloud, Ψ′ is represented as a
sparse 2D image (without loss of information) over (α,β )
with d being the color or value of each pixel. To cull
out points within our image, the distance of each pixel is
compared to the average distance of its surrounding “cone”
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Fig. 3: Culling occluded points. Transformed sparse scenes
(A) will have points which should be rejected (culled)
before rendering to avoid blending of foreground and back-
ground (B). Our culling algorithm (C) is lightweight, GPU-
accelerated, and does not rely on raycasting a scene mesh.

of neighboring rays. If the average distance of neighboring
rays is less than the depth of the current pixel, the point
is occluded and is removed from the sparse image. Fig. 3
visualizes the large effect of our culling algorithm and the
qualitative improvement it has on transformed pointclouds.

With our sparse and culled pointcloud, we need to build
a dense representation of the scene to sample a new cast of
LiDAR rays and generate the novel viewpoint. To densify
our sparse representation we train a UNet architecture [44]
to learn a dense output of the scene. Training data for our
densification network is generated using a 2D linear inter-
polator. We found that using a data-driven approach to den-
sification yielded smoother, more natural qualitative results
over strict rule-based interpolation (scipy.interpolate).
Furthermore, the resulting model is easily GPU-parallelizable
to achieve significant speedups (∼ 100× faster).

Finally, we sample sparse points from our dense repre-
sentation to form the novel view pointcloud. To determine
sampling locations we we can construct a prior, Ω, over the
existing ray cast angles of the sensor in our dataset. The ray
vectors for the sensor are largely fixed over time, as they are
built into the hardware of the sensor, but can have some slight
variations or drops based on the environment. Sampling ω

from the prior yields a collection of rays, {(αi,βi)}, to
cast and collect point readings from. Furthermore, the prior,
Ω, will respect several desirable properties of the sensor
which can also be user specified such as the quantity and
density of the LiDAR rays. Since we are still operating in
polar coordinate image space, ω is equivalent to a binary
mask image denoting where in our dense image should
be sampled. With our new, sampled polar image we can
invert the transform in Eq. 1 to represent our data back
in the desired 3D Cartesian space. Fig. 4 visualizes the
different stages in the rendering pipeline, through the dense
representation of the scene (A,B) as well as the result after
sampling and reprojecting back to 3D cartesian space (C).
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Fig. 4: LiDAR novel view-synthesis. Simulating a lateral
translation of 1m off the road. Dense representations of depth
(A) and intensity (B) are estimated from the sparse transfor-
mation. Sparse pointclouds (C) are rendered by sampling the
dense representation according to the sensor prior.

C. Event synthesis
Event-based cameras are asynchronous, continuous-time

sensors that detect brightness changes of the scene. An
event is emitted when brightness change exceeds a certain
threshold at a pixel location, and is described as a 4-tuple
of pixel coordinate, timestamp, and polarity. The polarity
is a binary value that indicates whether brightness change
is positive or negative. Conceptually, event camera can
be viewed as the derivative of regular RGB camera with
additional advantages of much higher operating frequency (>
10,000Hz) and dynamic range. Given its similarity to RGB
camera, event data can be simulated by taking derivative with
respect to time over interpolated RGB frames [15], [45].
Our proposed method extends prior work to additionally
handle (1) non-aligned camera projection across RGB and
event camera and (2) novel view synthesis according to
vehicle’s ego-motion. Simulating events from RGB instead
of event data allows applying VISTA to existing datasets
which mostly contain RGB sequences but not event data.

To capture the instantaneous change of pixel intensity, we
need to first construct a continuous representation of RGB
image stream. Given two consecutive RGB frames It1 , It2 and
bidirectional optical flow Ft1→t2 ,Ft2→t1 , this can be achieved
by arbitrary-time frame interpolation [46],

It1+k∆t = finterp(It1 , It2 , Ft1+k∆t→t1 , Ft1+k∆t→t2) (2)

Ft1+k∆t→t1 =−(1− k∆t)k∆tFt1→t2 +(k∆t)2Ft2→t1 (3)

Ft1+k∆t→t2 = (1− k∆t)2Ft1→t2 − k∆t(1− k∆t)Ft2→t1 (4)

where k ∈ [0, t2−t1
∆t ] and k∆t specifies the time interval to

be simulated in between. The arbitrary-time flow is derived
from temporal consistency going forward (t1 → t1 + k∆t)
and backward (t2→ t1 + k∆t ) in time with local smoothness
assumption. The interpolation function finterp is implemented
by a neural network that handles visibility issue from both
directions. We refer the reader to [46] for more details. With
this, we now apply an event generation model [47], [48],

(p, tk,ρ) if ρ
(

ln I(p, tk)− ln I(p, tk−∆t)
)
≥ ck (5)

where p is the pixel coordinate, ρ ∈ {−1,1} is polarity and
ck ∼ N (µc,σc) is the contrast threshold sampled from a

RGB space: Event space:

Fig. 5: Different pixel spaces for event generation. Events
can be generated by estimating brightness change in RGB
camera image space or virtual event camera image space.

Gaussian to simulate noise. The temporal granularity of event
generation is determined by ∆t, which yields more accurate
simulation with smaller values until saturating at subpixel
displacement of optical flow. Furthermore, adaptive sampling
[15] is used to jointly achieve accuracy and efficiency,

∆t =
t2− t1

min{max
p

max{Ft1→t2(p),Ft2→t1(p)}−1,∆tmax}
(6)

where ∆tmax sets an upper bound to computational resources
required for the simulation. Thus far, the only thing yet to
be defined is the space that pixel coordinate p lives in. It can
be image space of either RGB camera (input) or novel-view
event camera (output), which are related by reprojection,

pevent = KeventT novel
event T event

rgb D(prgb)K−1
rgbprgb (7)

where Kevent ,Krgb are intrinsics for event and RGB cameras,
D is depth, and T is transformation across two poses. We ex-
plicitly factorize T event

rgb since the control commands reference
at existing sensors in the dataset. In event generation model
(5), using prgb involves generating events in RGB image
space from the dataset and reprojecting pixel coordinates to
event image space. We implement a bilinear sampler with
thresholding to handle non-integer pixels after reprojection.
On the other hand, using pevent renders the scene based
on RGB dataset in event camera space and generate events
without pixel reprojection. We argue that p= pevent may be a
better option since it casts the subpixel issue of reprojection
(7) from interpolating in pixel coordinate space as in p= prgb
to interpolating in color/intensity space of meshes during
RGB image rendering. The comparison can be seen in Fig. 5.

IV. POLICY LEARNING

A. Data generation and training using VISTA

The capability of VISTA to simulate sensor measurements
allows for reinforcement learning [4] as well as guided policy
learning by generation of novel view training data. With
access to the internal state of the simulator, a controller with
privileged information [6], [31], [40] (GPL) can generate
optimal control commands corresponding to agent’s current
state. Associating this control with perception data increases
diversity of training data distribution and allows generating
edge cases locally around the dataset, thus improving the
recovery robustness of the policy. Algorithm 1 describes
data generation in VISTA and GPL. First, the simulator is
reset with random initialization (e.g., off-center position and
heading). The simulator is stepped with control commands



from the privileged controller and iteratively generates sensor
measurements and optimal control labels for supervising
policy learning. While there are no restrictions on the optimal
controller used for the privileged agent, we use a pure-
pursuit controller in our experiments. We use a shuffled
buffer to approximately ensure i.i.d. training samples. Before
adding data into the buffer, rejection sampling is used to
balance the label distributions [33]. Finally, we introduce
a branching step that locally branches out from stepping
the simulator with privileged control (e.g., turning right
instead of left as instructed). This is extremely important to
policy learning with event cameras since event data captures
changes in the scene and thus conflates the vehicle’s ego-
motion with its own control. This means that a policy can
accurately correlate control to the motion of the scene instead
of attending to the road. While not presenting an obvious
issue during open-loop evaluation [7], these policies will fail
catastrophically on a closed-loop test. However, by branching
with arbitrary control, we effectively disentangle ego-motion
and scene information in event patterns.

Algorithm 1 Data generation and training in VISTA
for k← 1 to N do

while ! buffer.full() do
if VISTA.done() then

VISTA.reset()
end if
x← VISTA.readSensorBuffer()
if useBranching then

VISTA.randomStep()
y← privilegedController(VISTA.getState())
revertState(VISTA, privilegedController)

else
y← privilegedController(VISTA.getState())

end if
VISTA.step(y)
if ! rejectSample(x,y) then

buffer.add(x,y)
end if

end while
buffer.shuffle()
trainModel(buffer.next())

end for

B. Input representation and model architectures

All models consist of a feature extractor which processes
the sensory data and a deterministic estimator which learns
control from the features. We use the same network archi-
tecture for the estimator (a 3-layer fully connected network),
which outputs a scalar value as curvature. For RGB images,
we use a simple 5-layer CNN, each layer comprises a
convolution, group norm, and ReLU [33]. For event data,
we accumulate events within a small time interval, project
them on a frame according to their pixel coordinates and
apply a convolutional feature extractor [7]. For LiDAR data,
we use FastLiDARNet [49], [50] that can process point cloud
efficiently with sparse tensor operation.

V. RESULTS

A. Experimental setup and data collection

Hardware setup. We collect data and deploy learned poli-
cies on a full-scale vehicle (2019 Lexus RX 450H) which
we have outfitted with autonomous driving capabilities. The

car is equipped with an NVIDIA 2080Ti GPU and an AMD
Ryzen 7 3800X 8-Core Processor. Perception sensors include
a 30Hz BFS-PGE-23S3C-CS RGB camera , a 10Hz Velo-
dyne VLS-128 LiDAR sensor, and a Prophesee Gen3 event-
based camera. The event camera runs at adaptive rate based
on events emission which range from hundreds to thousands
Hz. Other on-board sensors include inertial measurement
units (IMUs) and wheel encoders for estimating odometry as
well as a centimeter-level accurate OxTS global positioning
system (d-GPS) for evaluation.
Data collection. We collect data from multiple sensors (RGB
camera, LiDAR, event camera) in a wide variety of envi-
ronments, including different time of day (daytime/night),
weather conditions (sun/rain), and road types (urban/rural).
The entire dataset contains roughly 3 hours of driving data.
RGB images, LiDAR point cloud, event data, and curvature
feedback are used for VISTA simulation, policy learning and
evaluation. GPS data is only used for evaluation.
Evaluation metrics. For open-loop tests, we compute mean
squared errors between human control command (curvature)
and policies’ predictions. For closed-loop tests, we compute
mean deviation from the lane center, crash rate, and number
of interventions. In simulation, we consider crashes as lateral
translation from human trajectories larger than 2 meters. In
real-world tests, we intervene and take over control from
autonomous mode once vehicle is off the road.

B. Offline evaluation
In Tab. I, we show open-loop control errors of IL and

GPL. Note that the error is of the scale 1e−5 (normal
driving roughly has curvature between ±0.05) and thus both
algorithms perform quite well in spite of the difference.
IL outperforms GPL as expected given IL’s training objective
is aligned with such evaluation. However, open-loop error is
a very poor indicator of measuring the performance of a
driving policy [41] since it (1) only measures errors around
human trajectories and (2) ignores compounding feedback
errors that bring the vehicle to out-of-distribution states.

Instead, closed-loop test settings (either in simulation
or reality) serve as a greater proxy for evaluating policy
performance. We start by using VISTA to measure closed-
loop performance with synthetic data before moving to the
real-world. Tab. II shows closed-loop performance of policies
in VISTA. Consistent with prior research, we qualitatively
observe a common failure mode of IL policies where they
that gradually drift off the road and cannot recover (due

Sensor Algo. Mean Squared Error (1E-5)
Day Night Sun Rain Urban Rural

RGB IL 0.64 0.15 0.51 0.39 0.69 2.10
GPL 3.01 0.61 22.44 2.34 14.92 4.75

LiDAR IL 0.92 1.04 0.74 2.52 1.02 0.61
GPL 7.35 9.83 8.28 11.12 8.87 5.07

Event IL 0.18 0.26 0.37 1.24 0.19 10.81
GPL 20.75 10.12 16.54 6.54 10.88 10.25

Tab. I: Open-loop control errors. Open-loop IL outperforms
GPL when considering only error. Note that low open-loop
error is a very poor indicator for closed-loop success [41].



Sensor Algo. Mean Deviation Crash Rate
Day Night Sun Rain Urban Rural Day Night Sun Rain Urban Rural

RGB IL 0.283 0.165 0.289 0.425 0.285 0.191 0.080 0.008 0.090 0.010 0.146 0.094
GPL 0.102 0.068 0.120 0.101 0.120 0.226 0.002 0.000 0.002 0.006 0.004 0.000

LiDAR IL 0.327 0.302 0.295 0.366 0.307 0.213 0.664 0.656 0.652 0.734 0.668 0.330
GPL 0.266 0.258 0.280 0.323 0.268 0.274 0.334 0.330 0.322 0.426 0.316 0.150

Event IL 0.340 0.344 0.327 0.320 0.329 0.362 0.486 0.828 0.714 0.576 0.674 0.784
GPL 0.307 0.313 0.293 0.278 0.319 0.376 0.166 0.200 0.084 0.051 0.324 0.442

Tab. II: Closed-loop performance of policies in VISTA. GPL policies exhibit consistently reduced deviation from the center
line than compared to real-world IL. Furthermore, these polices exhibit greater robustness with lower crash rates.
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Fig. 6: Real-world deployment. Policy trajectories (n=3; 45km total) and crash locations (red dots) for RGB (A), LiDAR
(B), and Event (C) sensors. Cumulative distribution of deviations from the center (D) shows the benefit of training in VISTA.

to lack of recovery training data). GPL policies exhibit
consistently reduced deviation from the lane center and lower
crash rate than IL policies in a wide range of environments,
lighting, and sensors modalities.

C. Online real-world test

In Fig. 6, we demonstrate real-world policy deployment
of IL and GPL policies. For each policy, we run the
vehicle autonomously (controlled by the policy) for 3 trials
in the outerloop of the test track (total distance of all
trials is 45km). Fig. 6(A-C) show interventions (red dots)
throughout multiple trials. Fig. 6(D) shows percentage of
deviation from center smaller than a range of thresholds,
where larger area below the line means more stable lane
keeping maneuvers. The performance of GPL policies for
RGB and LiDAR are significantly better than IL policies.
This is highly aligned with our observation from closed-
loop testing in VISTA(Tab. II), which further motivates its
effectiveness for policy evaluation, considering the time and
safety costs of real-world testing. For event camera, while
GPL policy also exhibit superior performance in terms of
number of interventions, it deviates more from the center
compared to IL policy and suffers from much frequent
intervention compared to RGB and LiDAR GPL policies.

Recovery Rate RGB LiDAR Event

IL 0.27±0.13 0.16±0.11 0.00±0.00
GPL 000...999000±±±000...111333 000...888333±±±000...222222 000...999000±±±000...111555

Tab. III: Robustness Test. GPL policies significantly outper-
form real-world IL at recovering from edge cases.

This is due to the fact that event cameras can only see the
component of the road boundary non-parallel to vehicle’s ego
motion, while RGB and LiDAR sensors provide sufficient
information at every step for lane following. Such properties
highlight the potential utility of fusing event sensing with
RGB and LiDAR for greater benefits. We observed a swirling
maneuver along straight roads with event policies (8x more
jittery than RGB (measured by squared second derivative of
curvature). However, we found that our method of branched
learning for preventing ego-motion conflating the scene
understanding (Sec. IV-A) is highly effective in real-world
tests to reduce the number of interventions: 28.0±3.6 (IL)
18.0±1.0 (GPL) 6.5±3.8 (GPL with branching). To further
highlight the effectiveness of GPL policies, we conduct a
robustness test by initializing the car with ±30◦ rotation and
±2m translation from the lane center and measure the success
rate of recovery, as shown in Tab. III.

VI. CONCLUSION

We present VISTA, an open-source simulator that supports
multimodal sensor synthesis including 2D RGB cameras, 3D
LiDAR, and event-based cameras for mobile agents. The
simulator is data-driven and capable of synthesizing high-
fidelity sensor measurement sufficient for policy learning and
evaluation. We showcase the sim-to-real ability by directly
deploying policies learned in VISTA on a full-scale au-
tonomous vehicle for each sensor and demonstrate consistent
results between closed-loop evaluation in simulation and
real-world test. We believe the release and scalability of
VISTA opens up new research opportunities to the com-
munity for perception and control of autonomous vehicles.
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muzza, “Combining events and frames using recurrent asynchronous
multimodal networks for monocular depth prediction,” IEEE Robotics
and Automation Letters, vol. 6, no. 2, 2021.

[15] H. Rebecq, D. Gehrig, and D. Scaramuzza, “Esim: an open event
camera simulator,” in Conference on Robot Learning. PMLR, 2018,
pp. 969–982.

[16] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “Events-
to-video: Bringing modern computer vision to event cameras,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[17] D. Gehrig, M. Gehrig, J. Hidalgo-Carrio, and D. Scaramuzza, “Video
to events: Recycling video datasets for event cameras,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[18] F. Paredes-Valles and G. C. H. E. de Croon, “Back to event basics:
Self-supervised learning of image reconstruction for event cameras via
photometric constancy,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2021, pp.
3446–3455.

[19] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2021.

[20] Y. Tassa, S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez,
J. Merel, T. Erez, T. Lillicrap, and N. Heess, “dm control: Software
and tasks for continuous control,” arXiv preprint: 2006.12983, 2020.

[21] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in Proceedings of the International Conference
on Intelligent Robots and Systems (IROS), 2012.

[22] R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” 2019. [Online]. Available:
https://drake.mit.edu
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cheating,” in Conference on Robot Learning. PMLR, 2020, pp. 66–
75.

[41] F. Codevilla, A. M. Lopez, V. Koltun, and A. Dosovitskiy, “On offline
evaluation of vision-based driving models,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 236–
251.

[42] A. Amini, L. Paull, T. Balch, S. Karaman, and D. Rus, “Learning
Steering Bounds for Parallel Autonomous Systems,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2018.

[43] A. Amini, W. Schwarting, G. Rosman, B. Araki, S. Karaman, and
D. Rus, “Variational autoencoder for end-to-end control of autonomous
driving with novelty detection and training de-biasing,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 568–575.

[44] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention.
Springer, 2015, pp. 234–241.

http://pybullet.org
https://drake.mit.edu


[45] D. Gehrig, M. Gehrig, J. Hidalgo-Carrió, and D. Scaramuzza, “Video
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