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Synthesizing theories of human language
with Bayesian program induction

Kevin Ellis 1 , Adam Albright 2, Armando Solar-Lezama3,
Joshua B. Tenenbaum4 & Timothy J. O’Donnell5,6,7

Automated, data-driven construction and evaluation of scientific models and
theories is a long-standing challenge in artificial intelligence. We present a
framework for algorithmically synthesizing models of a basic part of human
language: morpho-phonology, the system that builds word forms from
sounds. We integrate Bayesian inference with program synthesis and repre-
sentations inspired by linguistic theory and cognitive models of learning and
discovery. Across 70 datasets from 58 diverse languages, our system synthe-
sizes human-interpretablemodels for core aspects of each language’smorpho-
phonology, sometimes approaching models posited by human linguists. Joint
inference across all 70 data sets automatically synthesizes a meta-model
encoding interpretable cross-language typological tendencies. Finally, the
same algorithm captures few-shot learning dynamics, acquiring new mor-
phophonological rules from just one or a few examples. These results suggest
routes to more powerful machine-enabled discovery of interpretable models
in linguistics and other scientific domains.

A key aspectof human intelligence is our ability to build theories about
the world. This faculty is most clearly manifested in the historical
development of science1 but also occurs in miniature in everyday
cognition2 and during childhood development3. The similarities
between the process of developing scientific theories and the way that
children construct an understanding of the world around them have
led to the child-as-scientist metaphor in developmental psychology,
which views conceptual changes during development as a form of
scientific theory discovery4,5. Thus, a key goal for both artificial intel-
ligence and computational cognitive science is to developmethods to
understand—and perhaps even automate—the process of theory
discovery6–13.

In this paper, we study the problem of AI-driven theory discovery,
usinghuman language as a testbed.Weprimarily focus on the linguist’s
construction of language-specific theories, and the linguist’s synthesis
of abstract cross-language meta-theories, but we also propose

connections to child language acquisition. The cognitive sciences of
language have long drawn an explicit analogy between the working
scientist constructing grammars of particular languages and the child
learning their languages14,15. Language-specific grammar must be for-
mulated within a common theoretical framework, sometimes called
universal grammar. For the linguist, this is the target of empirical
inquiry, for the child, this includes those linguistic resources that they
bring to the table for language acquisition.

Natural language is an ideal domain to study theory discovery for
several reasons. First, on a practical level, decades of work in linguis-
tics, psycholinguistics, and other cognitive sciences of language pro-
vide diverse raw material to develop and test models of automated
theory discovery. There exist corpora, data sets, and grammars from a
large variety of typologically distinct languages, giving a rich and
varied testbed forbenchmarking theory induction algorithms. Second,
children easily acquire language from quantities of data that are
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modest by the standards ofmodern artificial intelligence16–18. Similarly,
working field linguists also develop grammars based on very small
amounts of elicited data. These facts suggest that the child-as-linguist
analogy is a productive one and that inducing theories of language is
tractable from sparse data with the right inductive biases. Third, the-
ories of language representation and learning are formulated in com-
putational terms, exposing a suite of formalisms ready to be deployed
by AI researchers. These three features of human language—the
availability of a large number of highly diverse empirical targets, the
interfaces with cognitive development, and the computational form-
alisms within linguistics—conspire to single out language as an espe-
cially suitable target for research in automated theory induction.

Ultimately, the goal of the language sciences is to understand the
general representations, processes, andmechanisms that allowpeople
to learn and use language, not merely to catalog and describe parti-
cular languages. To capture this framework-level aspect of the pro-
blem of theory induction, we adopt the paradigm of Bayesian Program
Learning (BPL: see ref. 19). A BPL model of an inductive inference
problem, such as theory and grammar induction, works by inferring a
generative procedure represented as a symbolic program. Condi-
tioned on the output of that program, the model uses Bayes’ rule to
work backward from data (program outputs) to the procedure that
generated it (a program). We embed classic linguistic formalisms
within a programming language provided to a BPL learner. Only with
this inductive bias can a BPL model then learn programs capturing a
wide diversity of natural language phenomena. By systematically
varying this inductive bias, we can study elements of the induction
problem that span multiple languages. By doing hierarchical Bayesian
inference on the programming language itself, we can also auto-
matically discover some of these universal trends. But BPL comes at a
steep computational cost, and so we develop new BPL algorithms
which combine techniques from program synthesis with intuitions
drawn from how scientists build theories and how children learn
languages.

We focus on theories of natural languagemorpho-phonology—the
domain of language governing the interaction of word formation and

sound structure. For example, the English plurals for dogs, horses, and
cats are pronounced /dagz/, /hɔrsәz/, and /kæts/, respectively (plural
suffixes underlined; we follow the convention of writing phoneme
sequences between slashes). Making sense of this data involves rea-
lizing that the plural suffix is actually /z/ (part of Englishmorphology),
but this suffix transforms depending on the sounds in the stem (Eng-
lish phonology). The suffix becomes /әz/ forhorses (/hɔrsәz/) and other
words ending in stridents such as /s/ or /z/; otherwise, the suffix
becomes /s/ for cats (/kæts/) and other words ending in unvoiced
consonants. Full English morphophonology explains other phenom-
ena such as syllable stress and verb inflections. Figure 1a–c shows
similar phenomena in Serbo-Croatian: just as English morphology
builds the plural by adding /z/, Serbo-Croatian builds feminine forms
by adding /a/. Just as English phonology inserts /ә/ at the end of
/hɔrsәz/, Serbo-Croatianmodifies a stem such as /yasn/ by inserting /a/
to get /yasan/. Discovering a language’s morphophonology means
inferring its stems, prefixes, and suffixes (itsmorphemes), and also the
phonological rules that predict how concatenations of these mor-
phemes are actually pronounced. Thus acquiring the morpho-
phonology of a language involves solving a basic problem confront-
ing both linguists and children: to build theories of the relationships
between form and meaning given a collection of utterances, together
with aspects of their meanings.

We evaluate our BPL approach on 70 data sets spanning the
morphophonology of 58 languages. These data sets come from pho-
nology textbooks: they have high linguistic diversity, but are much
simpler than full language learning, with tens to hundreds of words at
most, and typically isolate just a handful of grammatical phenomena.
We will then shift our focus from linguists to children, and show that
the same approach for finding grammatical structure in natural lan-
guage also captures classic findings in the infant artificial grammar
learning literature. Finally, by performing hierarchical Bayesian infer-
ence across these linguistic data sets, we show that the model can
distill universal cross-language patterns, and express those patterns in
a compact, human understandable form. Collectively, these findings
point the way toward more human-like AI systems for learning the-
ories, and for systems that learn to learn those theories more effec-
tively over time by refining their inductive biases.

Results
One central problem of natural language learning is to acquire a
grammar that describes some of the relationships between form
(perception, articulation, etc.) and meaning (concepts, intentions,
thoughts, etc.; Supplementary Discussion 1). We think of grammars
as generating form-meaning pairs, 〈f,m〉, where each form corre-
sponds to a sequence of phonemes and each meaning is a set of
meaning features. For example, in English, the word opened has
the form/meaning =opεnd=, ½stem : OPEN; tense : PAST�� �

, which
the grammar builds from the form/meaning for open, namely
=opεn=, ½stem : OPEN�� �

, and the past-tense form/meaning, namely
=d=,½tense : PAST�� �

. Such form-meaning pairs (stems, prefixes, suf-
fixes) live in a part of the grammar called the lexicon (Fig. 1c). Toge-
ther, morpho-phonology explains how word pronunciation varies
systematically across inflections, and allows the speaker of a lan-
guage to hear just a single example of a new word and immediately
generate and comprehend all its inflected forms.

Model
Our model explains a set X of form-meaning pairs 〈f,m〉 by inferring a
theory (grammatical rules) T and lexicon L. For now, we consider
maximum aposteriori (MAP) inference–which estimates a single
〈T, L〉–but later consider Bayesian uncertainty estimates over 〈T, L〉,
and hierarchical modeling. This MAP inference seeks to maximize
P(T, L∣UG)∏〈f,m〉∈XP(f,m∣T, L), where UG (for universal grammar)
encapsulates higher-level abstract knowledge across different

Fig. 1 | A morpho-phonology problem. a Serbo-Croatian data (simplified). This
language’s morphology is illustrated for masculine and feminine forms. The data
motivate a morphological rule which forms the feminine form by appending /a/.
b illustrates a counterexample to this analysis: the masculine, feminine forms of
clear are /yasan/, /yasna/. These pronunciations are explained by Serbo-Croatian
phonology: the sound /a/ is inserted between pairs of consonants at the end of
words, notated + !a / C_C#. This rule requires that the true stem for /yasan/,
/yasna/ is /yasn/. c shows further stems inferred for this data. These stems are
stored in the lexicon.
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languages.We decompose each language-specific theory into separate
modules for morphology and for phonology (Fig. 2). We handle
inflectional classes (e.g. declensions) by exposing this information in
the observedmeanings, which follows the standard textbook problem
structure but simplifies the full problem faced by children learning the
language. In principle, our framing could be extended to learn these
classes by introducing an extra latent variable for each stem corre-
sponding to its inflectional class. We also restrict ourselves to con-
catenative morphology, which builds words by concatenating stems,
prefixes, and suffixes. Nonconcatenative morphologies20—such as
Tagalog’s reduplication, which copies syllables—are not handled. We
assume that each morpheme is paired with a morphological category:
either a prefix (pfx), suffix (sfx), or stem. We model the lexicon as a
function from pairs of meanings and morphological categories to

phonological forms. We model phonology as K ordered rules, written
rk

� �K
k = 1, each of which is a function mapping sequences of phonemes

to sequences of phonemes. Given these definitions, we express the
theory-induction objective as:

argmax
T,L

PðT,L∣UGÞ
Y

h f ,mi2X
1 f = PhonologyðMorphologyðmÞÞ� �

where Morphologyð½stem: σ; i�Þ= Lði,pfxÞ � Lðσ,stemÞ � Lði,sfxÞ
concatenate pref ix, stem , suf f ix

PhonologyðmÞ= r1ðr2ð� � � rK ðmÞ � � �ÞÞ
apply ordered rewrite rules

ð1Þ

Fig. 2 | The generativemodelunderlyingour approach.We infer grammars (teal)
for a range of languages, given only form/meaning pairs (orange) and a space of
programs (purple). Form/meaning pairs are typically arranged in a stem× inflection
matrix. For example, the lower rightmatrix entry for Catalanmeans we observe the
form/meaning pair ⟨/grizə/,[stem:GREY; gender:FEM]⟩. Grammars include pho-
nology, which transforms concatenations of stems and affixes into the observed
surface forms using a sequence of ordered rules, labeled r1, r2, etc. The grammar's
lexicon contains stems, prefixes, and suffixes, and morphology concatenates

different suffixes/prefixes to each stem for each inflection. ϵ refers to the empty
string. Each rule is written as a context-dependent rewrite, and beneath it, an
English description. In the lower black boxes,we show the inferredderivationof the
observed data, i.e. the execution trace of the synthesized program. Grammars are
expressed as programs drawn from a universal grammar, or space of allowed
programs. Makonde and Catalan are illustrated here. Other examples are in Fig. 4
and Supplementary Figs. 1–3.
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where [stem: σ; i] is a meaning with stem σ, and i are the remaining
aspects ofmeaning that exclude the stem (e.g., i could be [tense:PAST;
gender:FEMALE]). The expression 1 �½ � equals 1 if its argument is true
and 0 otherwise. In words, Eq. (1) seeks the highest probability theory
that exactly reproduces the data, like classic MDL learners21. This
equation forces the model to explain every word in terms of rules
operating over concatenations of morphemes, and does not allow
wholesale memorization of words in the lexicon. Eq. (1) assumes
fusional morphology: every distinct combination of inflections fuses
into a newprefix/suffix.This fusional assumption can emulate arbitrary
concatenative morphology: although each inflection seems to have a
single prefix/suffix, the lexicon can implicitly cache concatenations of
morphemes. For instance, if the morpheme marking tense precedes
themorphememarking gender, thenL([tense:PAST;gender:FEMALE],
pfx) could equal L([tense:PAST], pfx) ⋅ L([gender:FEMALE], pfx). We
use a description-length prior for P(T, L∣UG) favoring compact lexica
and fewer, less complex rules (Supplementary Methods 3.4).

The data X typically come from a paradigm matrix, whose col-
umns range over inflections and whose rows range over stems (Sup-
plementary Methods 3.1). In this setting, an equivalent Bayesian
framing (“Methods”) permits probabilistic scoring of new stems by
treating the rules and affixes as a generative model over
paradigm rows.

Representing rules and sounds
Phonemes (atomic sounds) are represented as vectors of binary fea-
tures. For example, one such feature isnasal, forwhich e.g. /m/, /n/, are
+nasal. Phonological rules operate over this feature space. To repre-
sent the space of such ruleswe adopt the classical formulation in terms
of context-dependent rewrites22. These are sometimes called SPE-style
rules since they were used extensively in the Sound Pattern of English22.
Rules are written (focus)→ (structural change)/(left trigger)_(right
trigger), meaning that the focus phoneme(s) are transformed accord-
ing to the structural change whenever the left/right triggering
environments occur immediately to the left/right of the focus (Sup-
plementary Fig. 5). Triggering environments specify conjunctions of
features (characterizing sets of phonemes sometimes called natural
classes). For example, in English, phonemes which are [−sonorant]
(such as /d/) become [-voice] (e.g., /d/ becomes /t/) at the end of a
word (written #) whenever the phoneme to the left is an unvoiced
nonsonorant ([− voice− sonorant], such as /k/), written [-sonorant]→
[-voice]/[-voice -sonorant]_#. This specific rule transforms the past
tense walked from /wɔkd/ into its pronounced form /wɔkt/. The sub-
script 0 denotes zero ormore repetitions of a featurematrix, called the
“Kleene star” operator (i.e., [+ voice]0 means zero or more repetitions
of [+ voice] phonemes).When such rules are restricted tonot be able to
cyclically apply to their own output, the rules and morphology corre-
spond to 2-way rational functions, which in turn correspond to finite-
state transducers23. It has been argued that the space of finite-state
transductions has sufficient representational power to cover known
empirical phenomenon in morpho-phonology and represents a limit
on the descriptive power actually used by phonological theories, even
those that are formally more powerful, including Optimality Theory24.

To learn such grammars, we adopt the approach of Bayesian
Program Learning (BPL). In this setting, wemodel eachT as a program
in a programming language that captures domain-specific constraints
on the problem space. The linguistic architecture common to all lan-
guages is often referred to as universal grammar. Our approach can be
seen as a modern instantiation of a long-standing approach in lin-
guistics that adopts human-understandable generative representa-
tions to formalize universal grammar22.

Inference
Wehavedefined the problemaBPL theory inductor needs to solve, but
have not given any guidance on how to solve it. In particular, the space

of all programs is infinitely large and lacks the local smoothness
exploited by local optimization algorithms like gradient descent or
Markov Chain Monte Carlo. We adopt a strategy based on constraint-
based program synthesis, where the optimization problem is trans-
lated into a combinatorial constraint satisfaction problem and solved
using a Boolean Satisfiability (SAT) solver25. These solvers implement
an exhaustive but relatively efficient search and guarantee that, given
enough time, an optimal solution will be found. We use the Sketch26

program synthesizer, which can solve for the smallest grammar con-
sistentwith somedata, subject to anupper boundon the grammar size
(see “Methods”).

In practice, the clever exhaustive search techniques
employed by SAT solvers fail to scale to the many rules needed to
explain large corpora. To scale these solvers to large and complex
theories, we take inspiration from a basic feature of how children
acquire language and how scientists build theories. Children do
not learn a language in one fell swoop, instead progressing
through intermediate stages of linguistic development, gradually
enriching their mastery of both grammar and lexicon. Similarly, a
sophisticated scientific theory might start with a simple con-
ceptual kernel, and then gradually grow to encompass more and
more phenomena. Motivated by these observations, we engi-
neered a program synthesis algorithm that starts with a small
program, and then repeatedly uses a SAT solver to search for
small modifications that allow it to explain more and more data.
Concretely, we find a counterexample to our current theory, and
then use the solver to exhaustively explore the space of all small
modifications to the theory which can accommodate this coun-
terexample. This combines ideas from counter-example guided
inductive synthesis26 (which alternates synthesis with a verifier
that feeds new counterexamples to the synthesizer) with test-
driven synthesis27 (which synthesizes new conditional branches
for each such counterexample); it also exposes opportunities for
parallelism (Supplementary Methods 3.3). Figure 3 illustrates this
incremental, solver-aided synthesis algorithm, while Supplemen-
tary Methods 3.3 gives a concrete walk-through of the first few
iterations.

This heuristic approach lacks the completeness guarantee of SAT
solving: it does not provably find an optimal solution, despite repeat-
edly invoking a complete, exact SAT solver. However, each such
repeated invocation is much more tractable than direct optimization
over the entirety of the data. This is because constraining each new
theory to be close in theory-space to its preceding theory leads to
polynomially smaller constraint satisfaction problems and therefore
exponentially faster search times, because SAT solvers scale, in the
worst case, exponentially with problem size.

Fig. 3 | Inference method for Bayesian Program Learning. To scale to large
programs explaining large corpora, we repeatedly search for smallmodifications to
our current theory. Such modifications are driven by counterexamples to the
current theory. Blue:grammars. Red: search radius.
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Quantitative analysis
We apply our model to 70 problems from linguistics textbooks28–30.
Each textbook problem requires synthesizing a theory of a number of
formsdrawn from somenatural language. These problems span awide
range of difficulties and cover a diverse set of natural language phe-
nomena. This includes tonal languages, for example, in Kerewe, to
count is /kubala/, but to count it is /kukíbála/, where accents mark high
tones; languages with vowel harmony, for example Turkish has /el/,
/t∫an/ meaning hand, bell, respectively, and /el-ler/, /t∫an-lar/ for the
plurals hands, bells, respectively (dashes inserted at suffix boundaries
for clarity); and many other linguistic phenomena such as assimilation
and epenthesis (Fig. 4 and Supplementary Figs. 1–3).

We first measure the model’s ability to discover the correct lex-
icon. Compared to ground-truth lexica, our model finds grammars
correctlymatching the entirety of the problem’s lexicon for 60% of the
benchmarks, and correctly explains themajority of the lexicon for 79%
of the problems (Fig. 5a). Typically, the correct lexicon for each pro-
blem is less ambiguous than the correct rules, and any rules which
generate the full data from the correct lexiconmust be observationally

equivalent to any ground truth rules we might posit. Thus, agreement
with ground-truth lexica should act as a proxy for whether the syn-
thesized rules have the correct behavior on the data, which should
correlatewith rule quality. To test this hypothesis we randomly sample
15 problems and grade the discovered rules, in consultation with a
professional linguist (the second author). Wemeasure both recall (the
fractionof actual phonological rules correctly recovered) andprecision
(the fraction of recovered rules which actually occur). Rule accuracy,
under both precision and recall, positively correlates with lexicon
accuracy (Fig. 5c): when the systemgets all the lexicon correct, it rarely
introduces extraneous rules (high precision), and virtually always gets
all the correct rules (high recall).

Prior approaches to morphophonological process learning either
abandon theory induction by learning black-box probabilistic
models31, or induce interpretable models but do not scale to a wide
range of challenging and realistic data sets. These interpretable alter-
natives include unsupervised distributional learners, such as the MDL
genetic algorithm in Rasin et al.32, which learns from raw word fre-
quencies. Other interpretable models leverage strong supervision:

Fig. 4 | Qualitative results on morpho-phonological grammar discovery illu-
strated on phonology textbook problems. The model observes form/meaning
pairs (orange) and jointly infers both a language-specific theory (teal; phonological
rules labeled r1, r2, ...) and a data set-specific lexicon (teal) containing stems and
affixes. Together the theory and lexicon explain the orange data via a derivation
where themorphology output (prefix+stem+suffix) is transformedaccording to the
ordered rules. Notice interacting nonlocal rules in Kerewe, a language with tones.

Notice multiple vowel harmony rules in Sakha. Supplementary Figs. 1–3 provide
analogous illustrations of grammars with epenthesis (Yowlumne), stress (Serbo-
Croatian), vowel harmony (Turkish, Hungarian, Yowlumne), assimilation (Luma-
saaba), and representative partial failure cases on Yowlumne and Somali (where it
recovers a partly correct rule set that fails to explain 20% of the data, while also
illustrating spirantization).
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Albright et al.33 learns rules from input–outputs, while ref. 34 learns
finite state transducers in the same setting. Other works attain strong
theoretical learning guarantees by restricting the class of rules: e.g.,
ref. 35 considers 2-input strictly local functions. These interpretable
approaches typically consider 2–3 simple rules at most. In contrast,
Goldwater et al.34 scales to tens of rules on thousands of words by
restricting itself to non-interacting local orthographic rules.

Our results hinge on several factors. A key ingredient is a correct
set of constraints on the space of hypotheses, i.e. a universal grammar.

We can systematically vary this factor: switching from phonological
articulatory features to simpler acoustic features degrades perfor-
mance (simple features in Fig. 5a, b). Our simpler acoustic features
come from the first half of a standard phonology text28, while the
articulatory features come from the latter half, so this comparison
loosely models a contrast between novice and expert phonology stu-
dents (Supplementary Methods 3.5). We can further remove two
essential sources of representational power–Kleene star, which
allows arbitrarily long-range dependencies, and phonological

Fig. 5 |Models applied todata fromphonology textbooks. aMeasuring% lexicon
solved,which is thepercentageof stems thatmatch goldground-truth annotations.
Problems marked with an asterisk are allophony problems and are typically easier.
For allophony problems, we count % solved as 0% when no rule explaining an
alternation is found and 100% otherwise. For allophony problems, full/CEGIS
models are equivalent, because we batch the full problem at once (Supplementary
Methods 3). b Convergence rate of models evaluated on the 54 non-allophony
problems. All models are run with a 24-h timeout on 40 cores. Only our full model
can best tap this parallelism (Supplementary Methods 3.3). Our models typically
converge within a half-day. SyPhon36 solves fewer problems but, of those it does

solve, it takes minutes rather than hours. Curves showmeans over problems. Error
bars show the standard error of the mean. c Rule accuracy was assessed by
manually grading 15 random problems. Both precision and recall correlate with
lexicon accuracy, and all three metrics are higher for easier problems requiring
fewerphonological rules (red, easier; blue, harder). Requiring an exactmatchwith a
ground-truth stemoccasionally allows solving some rules despite notmatching any
stems, as in theoutlier problemmarkedwith **. Pearson’s r confidence intervals (CI)
were calculated with two-tailed test. Points were randomly jittered ±0.05 for visi-
bility. Source data are provided as a Source data file.
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features, which allow analogizing and generalizing across phonemes.
Removing these renders only the simplest problems solvable
(-representation in Fig. 5a, b). Basic algorithmic details also matter.
Building a large theory at once is harder for human learners, and also
for our model (CEGIS in Fig. 5a, b). The recent SyPhon36 algorithm
strikes a different and important point on the accuracy/coverage
tradeoff: it aims to solve problems in seconds or minutes so that
linguists can interactively use it. In contrast, our system’s average
solution time is 3.6 h (Fig. 5b). SyPhon’s speed comes from strong
independence assumptions between lexica and individual rules, and

from disallowing non-local rules. These assumptions degrade cov-
erage: SyPhon fails to solve 76% of our data set. We hope that their
work and ours sets the stage for future systems that run interactively
while also more fully modeling the richness and diversity of human
language.

Child language generalization
If our model captures aspects of linguistic analysis from naturalistic
data, and assuming linguists and children confront similar problems,
thenour approach should extend tomodel at least someaspects of the

Fig. 6 |Modeling artificial grammar learning. aChildren can few-shot learnmany
qualitatively different grammars, as studied in controlled conditions in AGL
experiments. Our model learns these as well. Grammar names ABB/ABA/AAx/AxA
refer to syllable structure: A/B are variable syllables, and x is a constant syllable. For
example, ABBwords have three syllables, with the last two syllables being identical.
NB: Actual reduplication is subtler than syllable-copying20. b Model learns to dis-
criminate between different artificial grammars by training on examples of gram-
mar (e.g., AAB) and then testing on either unseen examples of words drawn from
the same grammar (consistent condition, e.g., new words following the AAB pat-
tern); or testing on unseen examples of words from a different grammar (incon-
sistent condition, e.g. new words following the ABA pattern), following the

paradigm of ref. 39. We plot log-odds ratios of consistent and inconsistent condi-
tions: logPðconsistentjtrainÞ=PðinconsistentjtrainÞ (“Methods”), over n = 15 random
independent (in)consistent word pairs. Bars show mean log odds ratio over these
15 samples, individually shown as black points, with error bars showing stddev. We
contrast models using program spaces both with and without syllabic repre-
sentations, which were not used for textbook problems. Syllabic representation
proves important for few-shot learning, but a model without syllables can still
discriminate successfully given enough examples by learning rules that copy indi-
vidual phonemes. See Supplementary Fig. 4 for more examples. Source data are
provided as a Source data file.
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child’s linguistic generalization. Studying children (and adult’s) learn-
ing of carefully constructed artificial grammars has a long tradition in
psycholinguistics and language acquisition37–39, because it permits
controlled and careful study of the generalization of language-like
patterns. We present our model with the artificial stimuli used in a
number of AGL experiments38–40 (Fig. 6a), systematically varying the
quantity of data given to themodel (Fig. 6b). Themodel demonstrates
few-shot inference of the same language patterns probed in classic
infant studies of AGL.

These AGL stimuli contain very little data, and thus these few-shot
learning problems admit a broad range of possible generalizations.
Children select from this spaceof possible generalizations to select the
linguistically plausible ones. Thus, rather than producing a single
grammar, we use the model to search a massive space of possible
grammars and then visualize all those grammars that are Pareto-
optimal solutions41 to the trade-off between parsimony and fit to data.

Hereparsimonymeans size of rules and affixes (the prior in Eq. (10));fit
to data means average stem size (the likelihood in Eq. (10)); and a
Pareto-optimal solution is one which is not worse than any other along
both these competing axes. Figure 7 visualizes Pareto fronts for two
classic artificial grammars while varying the number of example words
provided to the learner, illustrating both the set of grammars enter-
tained by the learner and how the learner weighs these grammars
against eachother. Thesefigures show the exact contours of the Pareto
frontier: these problems are small enough that exact SAT solving is
tractable over the entire search space, so our heuristic incremental
synthesizer is unneeded. With more examples the shape of the Pareto
frontier develops a sharp kink around the correct generalization; with
fewer examples, the frontier is smoother and more diffuse. By
explaining both natural language data and AGL studies, we see our
model as delivering on a basic hypothesis underpinning AGL research:
that artificial grammar learning must engage some cognitive resource

Fig. 7 | Modeling ambiguity in language learning. Few-shot learning of language
patterns can be highly ambiguous as to the correct grammar. Here we visualize the
geometry of generalization for several natural and artificial grammar learning
problems. These visualizations are Pareto frontiers: the set of solutions consistent
with the data that optimally trade-off between parsimony and fit to data. We show
Pareto fronts for ABB (ref. 39; top two) & AAX (Gerken53; bottom right, data drawn
from isomorphic phenomena in Mandarin) AGL problems for either one example
word (upper left) or three example words (right column). In the bottom left we
show the Pareto frontier for a textbook Polish morpho-phonology problem.
Rightward on x-axis corresponds to more parsimonious grammars (smaller rule
size + affix size) and upward on y-axis corresponds to grammars that best fit the
data (smaller stem size), so the best grammars live in the upper right corners of
thesegraphs. N.B.: Because the grammars and lexica vary in size across panels, the x

and y axes have different scales in each panel. Pink shade: correct grammar. As the
number of examples increases, the Pareto fronts develop a sharp kink around the
correct grammar, which indicates a stronger preference for the correct grammar.
With one example the kinks can still exist but are less pronounced. The blue lines
provably show the exact contour of the Pareto frontier, up to the bound on the
number of rules. This precision is owed to our use of exact constraint solvers. We
show the Polish problembecause the textbook author accidentally chose data with
an unintended extra pattern: all stems vowels are /o/ or /u/, which the upper left
solution encodes via an insertion rule. Although the Polish MAP solution is correct,
the Pareto frontier can reveal other possible analyses such as this one, thereby
serving as a kind of linguistic debugging. Source data are provided as a Source
data file.

Article https://doi.org/10.1038/s41467-022-32012-w

Nature Communications |         (2022) 13:5024 8



shared with first language acquisition. To the extent that this
hypothesis holds, we should expect an overlap between models cap-
able of learning real linguistic phenomena, like ours, and models of
AGL phenomena.

Synthesizing higher-level theoretical knowledge
No theory is built from scratch: Instead, researchers borrow concepts
from existing frameworks, make analogies with other successful the-
ories, and adapt general principles to specific cases. Through analysis
andmodeling ofmany different languages, phonologists (and linguists
more generally) develop overarching meta-models that restrict and
bias the space of allowed grammars. They also develop the phonolo-
gical common sense that allows them to infer grammars from sparse
data, knowing which rule systems are plausible based on their prior
knowledge of human language, and which systems are implausible or
simply unattested. For example, many languages devoice word-final
obstruents, but almost no language voices word-final obstruents (cf.
Lezgian42). This cross-theory common-sense is found inother sciences.
For example, physicists knowwhich potential energy functions tend to
occur in practice (radially symmetric, pairwise, etc.). Thus a key

objective for our work is the automatic discovery of a cross-language
metamodel capable of imparting phonological common sense.

Conceptually, this meta-theorizing corresponds to estimating a
prior,M, over language-specific theories, and performing hierarchical
Bayesian inference across many languages. Concretely, we think of
the meta-theory M as being a set of schematic, highly reusable
phonological-rule templates, encoded as a probabilistic grammar over
the structure of phonological rules, and we will estimate both the
structure and the parametersof this grammar jointlywith the solutions
to textbook phonology problems. To formalize a set of meta-theories
and define a prior over that set, we use the Fragment Grammars
formalism43, a probabilistic grammar learning setup that caches and
reuses fragments of commonly used rule subparts. Assuming we
have a collection of D data sets (e.g., from different languages),
notated fXdgDd = 1, our model constructs D grammars, fhTd ,LdigDd = 1,
along with a meta-theory M, seeking to maximize

PðMÞ
YD
d = 1

PðTd ,Ld ∣MÞPðXd ∣Td ,LdÞ ð2Þ

Fig. 8 | Discovering and using a cross-language metatheory. a Re-solving the
hardest textbook problems using the learned fragment grammarmetatheory leads
to an average of 31% more of the problem being solved. b illustrates a case where
these discovered tendencies allow the model to find a set of six interacting rules
solving the entirety of an unusually complex problem. c Themetatheory comprises
rule schemas that are human understandable and often correspond to motifs
previously identified within linguistics. Left column shows four out of 21 induced
rule schemas (Supplementary Fig. 6), which encode cross-language tendencies.

These learned schemas include vowel harmony and spirantization (a process where
stops become fricatives near vowels). The symbol FMmeans a slot that can hold any
featurematrix, and triggermeans a slot that can hold any rule triggering context.
Middle column showsmodel output when solving each language in isolation: these
solutions canbeoverly specific (Koasati, Bukusu), overly general (Kerewe, Turkish),
or even essentially unrelated to the correct generalization (Tibetan). Right column
shows model output when solving problems jointly with inferring a metatheory.
Source data are provided as a Source Data file.
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where P(M) is a prior on fragment grammars over SPE-style rules. In
practice, jointly optimizing over the space of Ms and grammars is
intractable, and so we instead alternate between finding high-
probability grammars under our current M, and then shifting our
inductive bias, M, to more closely match the current grammars. We
estimateM by applying this procedure to a training subset comprising
30 problems, chosen to exemplify a range of distinct phenomena, and
then applied this M to all 70 problems. Critically this unsupervised
procedure is not given access to any ground-truth solutions to the
training subset.

This machine-discovered higher-level knowledge serves two
functions. First, it is a form of human understandable knowledge:
manually inspecting the contents of the fragment grammar reveals
cross-language motifs previously discovered by linguists (Fig. 8c).
Second, it can be critical to actually getting these problems correct
(Fig. 8a, b and middle column of Fig. 8c). This occurs because a better
inductive bias steers the incremental synthesizer toward more pro-
mising avenues, which decreases its chances of getting stuck in a
neighborhood of the search space where no incremental modification
offers improvement.

To be clear, our mechanized meta-theorizing is not an attempt to
learn universal grammar (cf. ref. 44). Rather than capture a learning
process, our meta-theorizing is analogous to a discovery process that
distills knowledge of typological tendencies, thereby aiding future
model synthesis. However, we believe that children possess implicit
knowledge of these and other tendencies, which contributes to their
skills as language learners. Similarly, we believe the linguist’s skill in
analysis draws on an explicit understanding of these and other cross-
linguistic trends.

Discussion
Our high-level goal was to engineer methods for synthesizing inter-
pretable theories, using morphophonology as a testbed and linguistic
analysis as inspiration. Our results give aworking demonstration that it
is possible to automatically discover human-understandable knowl-
edge about the structure of natural language. Like linguists, optimal
inference hinges on higher-level biases and constraints; but the toolkit
developed here permits systematic probing of these abstract
assumptions and data-driven discovery of cross-language trends. Our
work speaks to a long-standing analogy between the problems con-
fronting children and linguists, and computationally cashes out the
basic assumptions that underpin infant and child studies of artificial
grammar learning.

Within phonology, our work offers a computational tool that can
be used to study different grammatical hypotheses: mapping and
scoring analyses under different objective functions, and studying the
implications of different inductive biases and representations across a
suite of languages. This toolkit can spur quantitative studies of classic
phonological problems, such as probing extensionally-equivalent
analyses (e.g., distinguishing deletion from epenthesis).

More broadly, the tools and approaches developed here sug-
gest routes for machines that learn the causal structure of the
world, while representing their knowledge in a format that can be
reused and communicated to other agents, both natural and artifi-
cial. While this goal remains far off, it is worth taking stock of where
this work leaves us on the path toward a theory induction machine:
what are the prospects for scaling an approach like ours to other
domains of language, or other domains of science more broadly?
Scaling to the full linguistic hierarchy—acoustics, phonotactics,
syntax, semantics, pragmatics—requires more powerful program-
ming languages for expressing symbolic rules, and more scalable
inference procedures, because although the textbook problems we
solve are harder than prior work tackles, full morpho-phonology
remains larger and more intricate than the problems considered

here. More fundamentally, however, we advocate for hybrid neuro-
symbolic models45–47 to capture crisp systematic productivity
alongside more graded linguistic generalizations, such as that
embodied by distributional models of language structure48.

Scaling to real scientific discovery demands fundamental inno-
vations, but holds promise.Unlike language acquisition, genuinely new
scientific theories are hard-won, developing over timescales that can
span a decade or more. They involve the development of new formal
substrates and new vocabularies of concepts, such as force in physics
and allele in biology. We suggest three lines of attack. Drawing
inspiration fromconceptual role semantics49, future automated theory
builders could introduce anddefinenew theoretical objects in termsof
their interrelations to other elements of the theory’s conceptual
repertoire, only at the end grounding out in testable predictions.
Drawing on thefindings of ourworkhere, themost promising domains
are those which are solvable, in some version, by both child learners
and adult scientists. This means first investigating sciences with
counterparts in intuitive theories, such as classical mechanics (and
intuitive physics), or cognitive science (and folk psychology). Building
on the findings here and in ref. 11, a crucial element of theory induction
will be the joint solving ofmany interrelatedmodel building problems,
followedby the synthesis of abstract over-hypotheses that encapsulate
the core theoretical principles while simultaneously accelerating
future induction through shared statistical strength.

Theory induction is a grand challenge for AI, and our work here
captures only small slices of the theory-building process. Like our
model, human theorists do craft models by examining experimental
data, but they also propose new theories by unifying existing theore-
tical frameworks, performing thought experiments, and inventing new
formalisms. Humans also deploy their theories more richly than our
model: proposing new experiments to test theoretical predictions,
engineering new tools based on the conclusions of a theory, and dis-
tilling higher-level knowledge that goes far beyond what our
Fragment-Grammar approximation can represent. Continuing to push
theory induction along thesemany dimensions remains a prime target
for future research.

Methods
Program synthesis
We use the Sketch26 program synthesizer. Sketch can solve the fol-
lowing constrained optimization problem, which is equivalent to our
goal of maximizing P(X∣T, L)P(T, L∣UG):

maximize FðX,TÞ= ∑
K

k = 1
logPðrk ∣UGÞ+ ∑

hf ,c,mi2L
log Pðf ∣UGÞ

subject to CðX,TÞ= 8 hf , ½stem : σ; i�i 2 X :

f = r1 � � � rK ðLðhi,pfxiÞ � Lðhσ,stemiÞ � Lðhi,sfxiÞÞ � � �
� 	

ð3Þ

given observations X and bound on the number of rules K.
Sketch offers an exhaustive search strategy, but we use incre-

mental solving in order to scale to large grammars.Mathematically this
works as follows: we iteratively construct a sequence of theories T0,T1,
... alongside successively larger data setsX0,X1, ... converging to the full
data set X, such that the tth theory Tt explains data set Xt, and succes-
sive theories are close to one another as measured by edit distance:

Xt + 1 =Xt ∪ ða setX0 � Xwhere:CðTt ,X
0ÞÞ ð4Þ

Dt + 1 = min
D

D, such that : 9TwhereCðT,Xt + 1Þ anddðT,TtÞ ≤ D ð5Þ

Tt + 1 = argmax
T

FðXt + 1,TÞ,such that : T satisfiesCðT,Xt + 1Þ anddðT,TtÞ ≤ Dt + 1

ð6Þ
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where d( ⋅ , ⋅ ) measures edit distance between theories, Dt+1 is the edit
distance between the theory at iteration t + 1 and t, andwe use the t = 0
base cases X0 =+ and T0 is an empty theory containing no rules. We
“minibatch” counterexamples to the current theory (X0 in Eq. (4))
groupedby lexeme, andorderedby theiroccurrence in thedata (e.g., if
the theory fails to explain walk/walks/walked, and this is the next
example in the data, then the surface forms of walk/walks/walked will
be added to Xt+1). See Supplementary Methods 3.3.

We implement all models as Python 2.7 scripts that invoke Sketch
1.7.5, and also use Python 2.7 for all data analysis.

Allophony problems
Allophony problems comprise the observed form-meaning set X, as
well as a substitution, which is a partial functionmapping phonemes to
phonemes (see Supplementary Methods 3.1). This mapping operates
over phonemes called ‘allophones.’ The goal of themodel is to recover
rule(s) which predicts which element of each allophone pair is an
underlying form, and which is merely an allophone. The underlying
phonemes are allowed in the lexicon, while the other allophones are
not allowed in the lexicon and surface only due phonological rules. For
example, an allophony substitution could be b 7!p,d 7! t,g 7! k

� �
. We

extend such substitutions to total functions onphoneme sequences by
applying the substitution to phonemes in its domain, and not applying
it otherwise. We call this total function s(⋅). For instance, using the
previous example substitution, s(abkpg) = apkpk. Solving an allophone
problem means finding rules that either map the domain of s(⋅) to its
range (T1 below), or vice versa (T2 below):

L1ðmÞ= sðf Þ when 9hf ,mi 2 X

L2ðmÞ= s�1ðf Þwhen 9hf ,mi 2 X

For i 2 1,2f g :

Ti = argmax
T

PðT∣UGÞPðX∣T,LiÞ = argmax
T

PðX,T,Li∣UGÞ

 � ð7Þ

Probabilistic framing
Our few-shot artificial grammar learning simulations require prob-
abilistically scoring held-out unobserved words corresponding to
unobserved stems. We now present a refactoring of our Bayesian
learning setup that permits these calculations. Given rules T and lex-
icon L, we define a likelihood PLik over a paradigm matrix X when the
data X contain stems disjoint from those in L:

PLikðX∣T,LÞ= ∑
L0
PðX∣T,L∪L0ÞPðL0∣UGÞ ð8Þ

where L0 ranges over lexica which assign forms to the stems present in
X, i.e. L0 3 hf 0,stem,σi iff X∋ 〈f, [stem: σ; i]〉 for some surface form f
and some underlying form f 0. The term PLik can be lower bounded by
taking the most likely underlying form for each stem:

PLikðX∣T,LÞ ≥ max
L0

PðX∣T,L∪L0ÞPðL0∣UGÞ ð9Þ

This lower boundwill be tightest when eachparadigm row admits very
few possible stems. Typically only one stem per row is consistent with
the rules and affixes, which justifies this bound.

The connection between the Bayesian likelihood PLik and the MAP
objective (Eq. (1)) canbe seenbypartitioning the lexicon into affixes (in
L) and stems (in L0), which also decomposes the objective into a

parsimony-favoring prior and a fit-to-data favoring likelihood term:

max
T,L

PðT,L∣UGÞPLikðX∣T,LÞ ≥ max
T,L,L0

PðT,L∣UGÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
prior

PðL0∣UGÞPðX∣T,L∪L0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
likelihood

ð10Þ

= max
T,L,L0

PðT,L∪L0∣UGÞPðX∣T,L∪L0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
= Eq:1w=lexicon set toL∪L0 ð11Þ

Few-shot artificial grammar learning
We present our system with a training set Xtrain of words from a target
language, such as the ABA language (e.g., /wofewo/, /mikami/, ...). We
model this training set as a paradigm matrix with a single column
(single inflection), with eachword corresponding to a different stem (a
different row in the matrix). Then we compute the likelihood assigned
to a held-outwordXtest either consistentwith the target grammar (e.g.,
following the ABA pattern) or inconsistent with the target grammar
(e.g., following the ABB pattern, such as /wofefe/, /mikaka/, ...). The
probability assigned to a held-out test word, conditioned on the
training set, is approximated bymarginalizing over the Pareto-optimal
grammars for the train set, rather than marginalizing over all possible
grammars:

PðXtest∣XtrainÞ= ∑
T,L

PðT,L∣XtrainÞPLikðXtest∣T,LÞ

≈ ∑
hT,Li2ParetoFrontierðXtrainÞ

PðXtrain,T,LÞPLikðXtest∣T,LÞ
∑hT0 ,L0 i2ParetoFrontierðXtrainÞPðXtrain,T

0,L0Þ
ð12Þ

which relies on the fact that Sketch has out-of-the-box support for
finding Pareto-optimal solutions to multiobjective optimization
problems26. We approximate the likelihood PLik(Xtest∣T, L) using the
lower bound in Eq. (9), equivalently finding the shortest stem which
will generate the testwordXtest, given the affixes inL and the rules inT.

Synthesizing a metatheory
At a high level, inference of the cross-language fragment grammar
works by maximizing a variational-particle50 lower bound on the joint
probability of the metatheory M and the D data sets, fXdgDd = 1:

logP M,fXdgDd = 1

 �
≥ log PðMÞ + ∑

D

d = 1
log ∑

hTd ,Ldi 2
support½Qdð�Þ�

P Xd ∣Td ,Ld

 �
P Td ,Ld ∣M
� 	

ð13Þ

where this bound is written in terms of a set of variational approximate
posteriors, Qd

� �D
d = 1, whose support we constrain to be small, which

ensures that the above objective is tractable. We alternate maximiza-
tion with respect to M (i.e., inferring a fragment grammar from the
theories in the supports of Qd

� �D
d = 1), andmaximizationwith respect to

Qd

� �D
d = 1 (i.e., finding a small set of theories for each data set that are

likely under the currentM). Our lower boundmost increases when the
support of each Qd

� �D
d = 1 coincides with the top-kmost likely theories,

so at each round of optimization, we ask the program synthesizer to
find the top k theories maximizing P(Xd∣Td, Ld)P(Td, Ld∣M). In practice,
we find the top k = 100 theories for each data set.

We representMby adapting the FragmentGrammars formalism43.
Concretely, M is a probabilistic context free grammar (PCFG) that
stochastically generates phonological rules. More precisely, M gen-
erates the syntax tree of a program which implements a phonological
rule. In the Fragment Grammars formalism, one first defines a base
grammar, which is a context-free grammar. Our base grammar is a
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context-free grammar over SPE rules (Supplementary Fig. 6). Learning
the fragment grammar consists of adding newproductions to this base
grammar (the “fragments”), while also assigning probabilities to each
production rule. Formally, each fragment is a subtree of a derivation of
a tree generated from a non-terminal symbol in the base grammar;
informally, each fragment is a template for a piece of a tree, and thus
acts as a schema for a piece of a phonological rule. Learning a fragment
grammar never changes the set of trees (i.e., programs and rules) that
can be generated from the grammar. Instead, through a combination
of estimating probabilities anddefining newproductions, it adjusts the
probability of different trees. See Supplementary Fig. 6, which shows
the symbolic structure of the learned fragment grammar.

This fragment grammar gives us a learned prior over single pho-
nological rules. We define P(T, L∣M) by assuming that rules are gener-
ated independently and that M does not affect the prior probability
of L:

PðT,L∣MÞ=PðL∣UGÞ
Y
r2T

Pðr∣MÞ ð14Þ

Our prior over fragment grammars, P(M), works by following the ori-
ginal work in this space43 by assuming that fragments are generated
sequentially, with new fragments generated from the current fragment
grammar by stochastically sampling them from the current fragment
grammar. This encourages shorter fragments, as well as reuse across
fragments.

We depart from ref. 43 in our inference algorithm: while ref. 43
uses Markov Chain Monte Carlo methods to stochastically sample
from the posterior over fragment grammars, we instead perform hill-
climbing upon the objective in Eq. (13). Each round of hillclimbing
proposes new fragments by antiunifying subtrees of phonological
rules in Td

� �D
d = 1, and re-estimates the continuous parameters of the

resulting PCFG using the classic Inside–Outside algorithm51. When
running Inside-Outside we place a symmetric Dirichlet prior over the
continuous parameters of the PCFG with pseudocounts equal to 1.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used and generated in this study have been publicly deposited
in GitHub52 at https://github.com/ellisk42/bpl_phonology along with
the accompanying source code (DOI 10.5281/zenodo.6578329) under
the GPLv3 license. Source data are provided with this paper.

Code availability
The code used and developed in this study has been deposited in
GitHub52 at https://github.com/ellisk42/bpl_phonology (DOI 10.5281/
zenodo.6578329) under the GPLv3 license.
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