
Starvation in End-to-End Congestion Control
Venkat Arun, Mohammad Alizadeh, Hari Balakrishnan

{venkatar, alizadeh, hari}@csail.mit.edu
MIT Computer Science and Artificial Intelligence Lab, Cambridge, MA

ABSTRACT
To overcomeweaknesses in traditional loss-based congestion

control algorithms (CCAs), researchers have developed and

deployed several delay-bounding CCAs that achieve high uti-

lization without bloating delays (e.g., Vegas, FAST, BBR, PCC,

Copa, etc.). When run on a path with a fixed bottleneck rate,

these CCAs converge to a small delay range in equilibrium.

This paper proves a surprising result: although designed to

achieve reasonable inter-flow fairness, current methods to de-

velop delay-bounding CCAs cannot always avoid starvation,

an extreme form of unfairness. Starvation may occur when

such a CCA runs on paths where non-congestive network

delay variations due to real-world factors such as ACK ag-

gregation and end-host scheduling exceed double the delay

range that the CCA converges to in equilibrium. We provide

experimental evidence for this result for BBR, PCC Vivace,

and Copa with a link emulator. We discuss the implications

of this result and posit that to guarantee no starvation an

efficient delay-bounding CCA should design for a certain

amount of non-congestive jitter and ensure that its equilib-

rium delay oscillations are at least one-half of this jitter.

CCS CONCEPTS
• Networks → Transport protocols; Protocol correct-
ness;

KEYWORDS
Congestion Control, Delay-Convergence, Starvation

ACM Reference Format:
Venkat Arun, Mohammad Alizadeh, Hari Balakrishnan {venkatar,
alizadeh, hari}@csail.mit.edu MIT Computer Science and Ar-
tificial Intelligence Lab, Cambridge, MA. 2022. Starvation in End-to-

End Congestion Control. In ACM SIGCOMM 2022 Conference (SIG-
COMM ’22), August 22–26, 2022, Amsterdam, Netherlands.ACM, New

York, NY, USA, 16 pages. https://doi.org/10.1145/3544216.3544223

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9420-8/22/08.

https://doi.org/10.1145/3544216.3544223

1 INTRODUCTION
With the rise of interactive and real-time applications, the

widespread recognition of bufferbloat as a significant prob-

lem [17], and increasing user expectations for high quality-of-

experience, the networking community has developed a vari-

ety of delay-bounding congestion control algorithms (CCAs)

for applications to use on the Internet. Unlike CCAs such

as Reno/NewReno [22, 24], Cubic [20], and Compound [41],

delay-bounding CCAs do not keep increasing their conges-

tion window (cwnd) until they experience packet loss or

receive acknowledgments (ACKs) with explicit congestion

notification (ECN) bits [14]. Instead they use the measured

round-trip time (RTT) and other factors (e.g., rate estimates)

to set cwnd. They aim to achieve high utilization without

bloating delays, and are also more efficient in the face of

some packet loss.

The development of delay-bounding CCAs for the Internet

began with Vegas in 1994 [6], followed by FAST [44], but

largely stagnated because of the inability of these schemes

to obtain good throughput when competing with buffer-

filling CCAs such as Reno/NewReno and especially Cubic.

Over the past ten years, however, delay-bounding CCAs

have experienced a resurgence with several proposals that

overcome these issues, including Sprout [46], Remy [45],

BBR [8, 10], PCC [12, 13], Copa [3], and Verus [48]. Some

of these schemes are widely deployed, most notably BBR,

which is now the CCA used by many popular Internet sites.

In this paper we study howmultiple flows running a given

delay-bounding CCA share bandwidth. We start by noting

that many CCAs share a common property. On ideal network

paths with a constant bottleneck rate and propagation delay,

they converge to a small delay range and oscillate within

that range. The mean queueing delay range experienced at

equilibrium is either constant (no matter what the bottleneck

rate) or a decreasing function of the bottleneck rate (e.g., the

CCA maintains a certain number of enqueued packets).

We show that this convergence property has an important

consequence. Because most CCAs attempt to work across

many orders ofmagnitude of rates, theymustmap a large rate

range into a small delay range.
1
Thus, even small changes in

estimated queueing delay would induce enormous changes

1
Unless they are also willing to let the delay bound grow with the rate,

which is not interesting in practice.

https://doi.org/10.1145/3544216.3544223
https://doi.org/10.1145/3544216.3544223

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands V. Arun, M. Alizadeh, H. Balakrishnan

in the inferred rate. This observation suggested to us that per-

haps bandwidth may not be shared equitably unless delays

were perfectly measurable.

We realized, however, that even perfect delay measure-

ments do not suffice unless there is a way to precisely mea-

sure only congestive queueing delays. The reason is that non-

congestive (i.e., non-bottleneck-queueing) contributions to

network delay are rarely constant in practice, and hard to

separate from congestion. Due to effects such as ACK aggre-

gation, delayed ACKs, end-host operating system or thread

scheduling, token bucket filters, hardware offload timing

variations, etc., packets experience jitter on network paths

unrelated to bottleneck queueing.

The designers of delay-bounding CCAs have long rec-

ognized these issues and use various techniques to at-

tempt to distinguish queueing from non-queueing (non-

congestive) RTT variations. These include averages (Vegas,

FAST, BBR) [6, 8, 44], minimums (LEDBAT, Copa) [3, 38], and

maximums (Verus) [48] of RTT; maximums of rate (BBR) [8];

and repeating experiments (PCC) [12]. The problem, how-

ever, is inherently difficult due to the wide variety of delay

patterns observed on real-world paths. A recent paper on

CCA verification (CCAC) reported that many of these CCAs

fail in surprising ways even in simple scenarios [2].

Given this motivation, we focused on understanding the

effects of non-congestive jitter on delay-bounding CCAs,

expecting some degree of unfairness and hoping to quantify

it as a function of the delay jitter. What we found, instead,

surprised us: efficient delay-bounding CCAs that converge

in steady state to a bounded delay range are not merely un-

fair, but cannot avoid starvation. We prove that when two

flows using the same CCA share a bottleneck link, if the

non-congestive delay variations exceed double the differ-

ence between the maximum and minimum queueing delay

at equilibrium, then there are patterns of non-congestive

delay where one flow will get arbitrarily low throughput

compared to the other. Our theorem shows that CCAs have

to choose at most two out of three properties: high through-

put, convergence to a small and bounded delay range, and

no starvation. We prove this result using a simple but real-

istic network model where the network path can delay any

packet in an arbitrary way within a small range.

It is important to note that starvation is a strong form of

unfairness, going well beyond traditional notions of RTT

unfairness or even one flow getting a constant factor higher

throughput than the other. We prove that there is no finite
𝑠 > 1 where the faster flow will always get less than 𝑠 times

the throughput of the slower one. To demonstrate that these

results are not contrived or hypothetical, we use insights

from the proof to show empirical scenarios with BBR, Copa,

and PCC where starvation occurs— simple topologies with

equal propagation RTTs where the ratio of throughput be-

tween two flows is 10 : 1.
2

This result sounds pessimal for delay-bounding CCAs, so

the question is whether we are doomed to choose between

bounding delays and avoiding starvation.We discuss howwe

might be able to achieve both desirable goals by being explicit

about non-congestive delays in CCA design, ensuring that

the CCA’s delay variations in equilibrium are at least half as

as large as the non-congestive jitter expected along a path.

If that is not the case, then our results prove that starvation

is inevitable.

2 DELAYS AND DELAY-CONVERGENCE
This section discusses the sources of delays, focusing on the

difference between congestive and non-congestive sources

of delay variation. It formally defines the notion of delay-

convergence discussed earlier. Table 1 provides a glossary of

symbols used in the paper.

2.1 Delay Contributors
The RTT experienced by a packet has three components:

(1) congestive (bottleneck) delay, which is the sum of the

queueing delay incurred by packets waiting to be sent

on the bottleneck link and the transmission time over

the bottleneck link;

(2) minimum packet propagation RTT (or delay), denoted
𝑅𝑚 , defined as the time it takes for a single packet to

traverse the non-bottleneck portions of the path and

for the sender to receive an ACK (this includes both

the speed-of-light delay of the path and the packet

transmission delays on each non-bottleneck link);

(3) non-congestive delay, which we define as jitter due to
network elements (perhaps also at the bottleneck) that

may temporarily hold packets or ACKs but are not by

themselves persistent rate bottlenecks.

Sources of non-congestive delay include ACK aggregation,

delayed ACKs, end-host or in-network scheduling overheads,

token bucket filters, hardware offload timing variations, and

delays at the MAC and physical layers. In practice, non-

congestive delay can range from a few milliseconds caused

by operating system thread scheduling [29] to tens of mil-

liseconds due to link-layer (e.g., Wi-Fi) ACK aggregation [18].

Each of these factors jitters the RTT in unpredictable ways.

Delay-bounding CCAs seek to control the queueing delays

at the bottleneck link. The problems we address arise because

end-to-end CCAs do not (and perhaps cannot) disambiguate

between two sources of variability: queueing and the non-

congestive delay jitter.

2
This ratio would be higher but for limitations of our link emulator.

Starvation in End-to-End Congestion Control SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

𝐶 Link rate 𝑅𝑚 Min propagation RTT

𝐷 Model’s delay bound cwnd Congestion window

cwnd Congestion window 𝑠 Bound on unfairness

𝑑max (𝐶), 𝑑min (𝐶) Max/min delay for CCA after convergence

𝛿 (𝐶) 𝑑max (𝐶) − 𝑑min (𝐶) 𝛿max
Upper bound on 𝛿 (𝐶)

𝜆 𝑑max
, 𝛿max

apply for𝐶 > 𝜆 𝑑max
Upper bound on 𝑑max (𝐶)

Table 1: Glossary of symbols.

2.2 Delay-Convergence
We observe that despite their many operational differences,

most (if not all) delay-bounding CCAs developed to date

share a common property, which we call delay-convergence.
They seek to converge to a fixed sending rate and queue-

ing delay, making only small (if any) oscillations about that

point. This design pattern offers two benefits. First, stable

sending rates provide stable performance for the application.

Second, many schemes, either implicitly or explicitly, map

sending rates to corresponding (inferred) queueing delays,

which makes it easier to reason about their behavior. As a

result, many end-to-end delay-controlling CCAs employ this

strategy including Vegas, FAST, Sprout, BBR, PCC Vivace,

Copa, PCC Proteus, and Verus.

We define a delay-convergent CCA based on how it be-

haves when a single flow runs on an ideal path. An ideal

path has a constant bottleneck link rate 𝐶 , minimum packet

propagation RTT 𝑅𝑚 , and a bottleneck queue large enough

to never overflow. Naturally, such a large enough queue size

only exists for CCAs that bound their maximum queue.

Definition 1. A CCA A is delay-convergent if two con-
ditions hold when it is run on an ideal path with a given 𝑅𝑚 :
(1) There is a time 𝑇 after which the RTT experienced is al-

ways in a bounded interval [𝑑min (𝐶), 𝑑max (𝐶)], where𝐶
is the bottleneck rate. Define 𝛿 (𝐶) ≜ 𝑑max (𝐶) −𝑑min (𝐶).

(2) Both𝑑max (·) and 𝛿 (·) are bounded for𝐶 not approaching
zero, i.e., there exist a link rate 𝜆 > 0 and finite bounds
𝑑max and 𝛿max such that 𝑑max (𝐶) < 𝑑max and 𝛿 (𝐶) <
𝛿max for all 𝐶 > 𝜆.3

Figure 1 depicts this definition, showing the time evolution

of the RTT for a hypothetical CCA. As we will see, CCAs that

ensure a smaller 𝛿max
—and hence are “more convergent”—

are more susceptible to starvation. In particular, we prove

that starvation can occur if the delay ambiguity caused by

non-congestive jitter delay is > 2𝛿max
. For many CCAs, 𝛿max

is small because they strive to keep delay variations small

compared to 𝑅𝑚 . Hence even a little ambiguity can cause

starvation.

For instance, 𝛿 (𝐶) is 0 for Vegas, FAST, and BBR in cwnd-

limited mode;
4𝛼
𝐶

for Copa, where 𝛼 is the packet size (< 0.5

3
A finite 𝑑max

guarantees that a CCA is delay-convergent. We still discuss

𝛿max
separately because it controls how susceptible a CCA is to starvation.

Time

R
TT

0

Converged region

Figure 1: Ideal-path behavior of a hypothetical delay-convergent

CCA.

ms when 𝐶 > 96 Mbit/s and 𝛼 = 1500 bytes); 𝑅𝑚/4 for BBR

in pacing mode; and 𝑅𝑚/20 for PCC Vivace (see Figure 3). We

show that all these protocols suffer from starvation even in

simple two-flow scenarios with small non-congestive jitter.

For a fixed 𝑅𝑚 , a delay-convergent CCA maps each link

rate 𝐶 to a delay range in steady state. Figure 2 shows how

this range may vary as 𝐶 changes. Typically 𝑑max (·) and
𝑑min (·) are decreasing functions of 𝐶 because CCAs typi-

cally increase their rate as their estimate of congestive delay

decreases.

Figure 3 shows the rate-delay graphs for some real-world

delay-convergent CCAs. For all these CCAs, 𝛿 (𝐶) is small

(or grows smaller with 𝐶).

3 NETWORK MODEL
Our analysis and proof use the network model shown below:

CCA 1

CCA 2

Flows share a single large FIFO queue from which packets

are dequeued at a constant rate of 𝐶 bits/s
4
and experience

a constant minimum packet propagation RTT 𝑅𝑚 . Packets

then pass through a component that adds a non-deterministic,
bounded delay that represents the non-congestive delay on

a network path. This component can delay packets by any

value between 0 and 𝐷 seconds without reordering packets.

This non-congestive delay is flow-specific because the non-

bottleneck parts of the network path may be different for

different flows.

Non-congestive delays create ambiguity about the amount

of queueing delay at the bottleneck. For example, when a

CCAmeasures an RTT increase ofΔ𝑑 ,5 it only knows that the
increase due to congestion is betweenΔ𝑑−𝐷 (whichmight be

4
We assume that the bottleneck link rate𝐶 is constant; when it varies as

on wireless links, designing a CCA only becomes harder.

5
CCAs are typically only concerned with changes in delay because the

constant propagation delay 𝑅𝑚 conveys no information about congestion.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands V. Arun, M. Alizadeh, H. Balakrishnan

Link rate

E
qu

ili
br

iu
m

 R
TT

0

D

Figure 2: The rate-delay graph for a hypothetical delay-

convergent algorithm. The 𝐶 of the ideal path varies while its

𝑅𝑚 is fixed.

negative) and Δ𝑑+𝐷 . This ambiguity creates confusion at the

sender. If the delay observed is truly caused by congestion,

the CCA should reduce its rate, but if it does so and the

delay turns out to be non-congestive, it may under-utilize the

network. When flows sharing a link estimate the queueing

delay differently, they may send at unequal rates, which can

cause starvation. A larger 𝐷 implies higher ambiguity, and

as 𝐷 → 0 the model approaches the ideal path that induces

no ambiguity.

It is important that non-congestive delays in the model

are non-deterministic but not random. This model ensures

that standard filtering techniques cannot always distinguish

between queueing and non-congestive delays. This modeling

choice ismotivated by the observation that whilemanyCCAs

attempt various kinds of filtering, they fail on some paths.

For example, averaging [6, 13, 38] works only when non-

congestive delay is random with mean 0. This is usually not

the case; because network components add positive delay, the

mean is usually positive. Using minimums of delay [3, 38]

and maximums of rate [8] have also been tried, but have

been shown to be ineffective [2]. Although we cannot rule

out the existence of a sophisticated statistic that identifies

non-congestive delays accurately (perhaps using machine

learning), the problem is inherently difficult due to the wide

variety of delay patterns observed on real-world paths. Thus

we believe that a CCA should be stress-tested against our

model for robustness.

Our model extends the CCAC model [2] to multiple flows,

but is weaker
6
; for example, we do not model token bucket fil-

ters whereas CCAC’s model does. Since our model is weaker,

our theorems are stronger; any impossibility result that holds

for our model also holds for the CCAC model.

4 STARVATION IS INEVITABLE FOR
DELAY-CONVERGENT ALGORITHMS

Our main result is that if the delay range in equilibrium,

𝛿max
, induced by the CCA is smaller than one-half of the

measurement ambiguity of the network path, 𝐷 , then there

6
In the single flow case, the CCAC paper shows that it includes all network

behaviors of our model.

are conditions under which an efficient CCA cannot simul-

taneously bound delays and avoid starvation. This section

describes the key ideas and steps involved in proving this

result. We start with a motivating example and definitions

before providing the formal statement and proof.

4.1 Example
Before formalizing our result, we describe an example that

gives insight about how non-congestive delay can lead to

starvation. Consider a CCA such as Vegas or FAST that seeks

to maintain 𝛼 packets in the queue per flow in equilibrium.

𝛼 is a parameter of the algorithm (e.g., 𝛼 = 4 packets). Over

an ideal path, once the CCA hits this target, its rate stabilizes

and the queue length never changes. Hence 𝛿𝑚𝑎𝑥 = 0 and

the RTT is 𝑅𝑚 + 𝛼/𝐶 as shown in Figure 3.

The issue is that, to achieve this equilibrium, the CCAmust

measure the queueing delaywith high precision. For example,

with 𝛼 = 4 and a packet size of 1500 bytes, 𝛼/𝐶 = 0.5 ms

for 𝐶 = 96 Mbit/s and 0.05 ms for 𝐶 = 960 Mbit/s. Thus a

difference of only 0.45 ms in the estimated queueing delay

can cause the CCA to vary its sending rate by 10×! Therefore,
if the delay measurement ambiguity exceeds this amount,

it can easily cause severe unfairness. Delay jitter of tens of

milliseconds occur on Wi-Fi [18] and cellular [47] links.
7

This problem is not limited to Vegas or FAST or even CCAs

with decreasing rate-delay functions as shown in Figure 2.

Any delay-convergent CCA that seeks to bound delay varia-

tion below the level of jitter (delay ambiguity) of the network

will suffer from the same problem. The fundamental issue

is that very different link rates are consistent with similar

delay measurements. When different flows experience dif-

ferent non-congestive delays, they can infer very different

link rates, causing unfairness, and as we show, starvation.

4.2 Definitions
We assume that all flows in the network start at time ≥ 0. We

define the throughput of a flow at time 𝑡 to be the number

of bytes acknowledged between time 0 to 𝑡 divided by 𝑡 . We

are interested in starvation, an extreme form of unfairness.

We propose the following definition.

Definition 2. Consider two flows 𝑓1 and 𝑓2 starting from
arbitrary initial conditions (e.g., one of the flows could have
run for a long time and the other just starting). The network
is s-fair if there always exists a finite time 𝑡 such that for
all time beyond 𝑡 , the ratio of the throughput achieved by the
faster flow to the slower one is smaller than 𝑠 .

Definition 3. Starvation is said to occur if the network
is not 𝑠-fair for any finite 𝑠 .

7
See also slide 5 of https://datatracker.ietf.org/meeting/101/materials/

slides-101-iccrg-an-update-on-bbr-work-at-google-00

https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00

Starvation in End-to-End Congestion Control SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

0.1 1 10 100
Link rate (Mbit/s)

Rₘ

2Rₘ

RT
T,

 R
ₘ

=
10

0m
s

Vegas and FAST

0.1 1 10 100
Link rate (Mbit/s)

Rₘ

2Rₘ

Copa

0.1 1 10 100
Link rate (Mbit/s)

Rₘ
1.25Rₘ

2Rₘ

Pacing limited

cwnd-limited

BBR

0.1 1 10 100
Link rate (Mbit/s)

Rₘ

2Rₘ

1.05Rₘ

PCC Vivace

Figure 3: How various delay-bounding CCAs map delay to sending rates. The shaded region shows 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛 for each CCA. The

region’s width is 𝛿 (𝐶). BBR has two modes (shown). For Vegas, FAST, and BBR (cwnd-limited), 𝑑𝑚𝑎𝑥 = 𝑑𝑚𝑖𝑛 , hence it is a line, not a

region. For these CCAs, 𝛿 (𝐶) = 0. Section 5 describes how these mappings arise from the dynamics of these algorithms. Delay increases

as 𝐶 → 0 for all CCAs since a transmission delay of 1/𝐶 is unavoidable.

This definition allows for massive unfairness without caus-

ing starvation. For example, if in steady state the two flows

achieve a throughput ratio of a million to one, we would

still say that there is no starvation. Our analysis asks if any
finite ratio is achievable and proves that it is impossible for

delay-convergent CCAs.

To prove that starvation occurs, we need to show that

there exist starting states and network behavior after which

the flows never improve their bandwidth allocation no matter
how long they run. This is surprising because we expect our

CCAs to eventually converge to a good allocation no matter

the initial allocation. Flows start with unequal allocations,

for instance, when one starts after the other. We also show

empirically that for Copa, BBR and PCC it is quite easy to

cause starvation even when the flows start at the same time.

One might think that this starvation claim requires CCAs

to run at high efficiency; for example, perhaps a focus on

100% utilization leads to aggressive behavior causing star-

vation. We find that our result applies to CCAs that always

utilize at least some constant fraction of the link capacity,

which can be quite small (say 1%), and far from extreme effi-

ciency. We only need to eliminate “silly” CCAs such as “set

cwnd = 10 always”, which avoid starvation but are inefficient

and impractical, as well as application-limited flows.

Definition 4. A CCA is f-efficient if, when run on an
ideal path with bottleneck link rate 𝐶 and minimum RTT 𝑅𝑚 ,
it eventually gets a throughput of at least 𝑓 𝐶 ; i.e., for any 𝑡 ,
there exists a 𝑡 ′ > 𝑡 such that the number of delivered bytes in
the period 0 to 𝑡 ′ is at least 𝑓 𝐶𝑡 ′.

We define 𝑓 -efficiency in this way because we need to

make statements about all delay-convergent CCAs, even ab-

surd ones. For instance one can contrive a CCA for which

the limit of the throughput as 𝑡 →∞ does not exist. Practical

CCAs are usually better behaved. We believe this definition

adequately captures steady-state throughput since through-

put must be at least 𝑓 𝐶 infinitely many times.

4.3 Starvation Theorem
The following theorem states our result about the inevitabil-

ity of starvation for delay-convergent CCAs.

Theorem 1. For any deterministic, 𝑓 -efficient, delay-
convergent CCAA, any propagation delay𝑅𝑚 , any throughput
ratio 𝑠 ≥ 1, and any𝐷 > 2𝛿max, there exists a network scenario
with two flows (specified via two per-flow initial states and
trajectories of non-congestive delays), such that one flow gets a
throughput 𝑥1 and the other flow gets a throughput 𝑥2 ≥ 𝑠 · 𝑥1.

The outline for the proof is as follows. Appendix A fills in

the mathematical details that we omit here.

Step 1. Recall that the bound 𝛿max
has a corresponding 𝜆;

𝛿 (𝐶) < 𝛿max
and 𝑑max (𝐶) < 𝛿max

for all 𝐶 > 𝜆. We identify

two bottleneck link rates 𝐶1,𝐶2 ≥ 𝜆, such that 𝐶2 is much

larger than 𝐶1 (at least a factor 𝑠/𝑓 larger) but the CCA

A, when run independently on links with these two rates,

converges to delays in two ranges that are close to each other.

Here, “close” means that the delay ranges achieved at rates

𝐶1 and 𝐶2 lie within an interval of size 𝛿𝑚𝑎𝑥 + 𝜖 . We will

prove that for any 𝜖 > 0, we can always find such a 𝐶1 and

𝐶2 for a delay-convergent CCA (we will pick 𝜖 later).

Our claim follows from a pigeonhole principle argument

illustrated in Figure 4. Recall that the delays for any link

rate > 𝜆 must fall in the interval [𝑅𝑚, 𝑑𝑚𝑎𝑥]. Now there are

only a finite number of non-overlapping intervals of size 𝜖

that can fit in [𝑅𝑚, 𝑑𝑚𝑎𝑥] (at most ⌈(𝑑𝑚𝑎𝑥 −𝑅𝑚)/𝜖⌉ of them).

But consider, for example, the infinite sequence of link rates

(𝜆0, 𝜆1, . . .), defined as 𝜆𝑖 = 𝜆 · (𝑠/𝑓)𝑖 . We have: 𝜆𝑖 ≥ 𝜆 for

all 𝑖 and 𝜆 𝑗 ≥ (𝑠/𝑓) · 𝜆𝑖 for all 𝑗 > 𝑖 . Since this is an infinite

sequence of link rates, we can find a pair 𝜆 𝑗 ≥ (𝑠/𝑓) ·𝜆𝑖 such
that 𝑑𝑚𝑎𝑥 (𝜆𝑖) and 𝑑𝑚𝑎𝑥 (𝜆 𝑗) fall within the same interval of

size 𝜖 , i.e. |𝑑max (𝜆1) −𝑑max (𝜆2) | < 𝜖 . Let𝐶1 = 𝜆𝑖 and𝐶2 = 𝜆 𝑗 .

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands V. Arun, M. Alizadeh, H. Balakrishnan

Link Rate

D
el

ay
 R

an
ge

Figure 4: Pigeonhole principle argument used in the proof.

D
el

ay

Time Time

Link rate = Link rate =

S
en

di
ng

 r
at

e

Time Time

Ratio of throughput

Figure 5: Convergence trajectory of a hypothetical delay-

convergent CCA.

The claim follows because the delay range for any link rate

has size at most 𝛿𝑚𝑎𝑥
.

Step 2. Consider the trajectories of sending rate and delay
when running a flow using CCA A independently on ideal

paths with link rates𝐶1 and𝐶2. Recall that an ideal path has

zero non-congestive delay. Figure 5 shows an example of

a hypothetical delay-convergent algorithm that converges

after times𝑇1 and𝑇2 in the two cases. The CCA converges to

similar but distinct delay ranges on the two links. However,

it converges to very different sending rates in the two cases.

Let 𝑥1 and 𝑥2 denote the long-term throughput achieved on

links of capacity 𝐶1 and 𝐶2 respectively. Clearly 𝑥1 ≤ 𝐶1,

and since CCA A is 𝑓 -efficient, 𝑥2 ≥ 𝑓 𝐶2. It follows that

𝑥2 ≥ 𝑓 𝐶2 ≥ 𝑓 · (𝑠/𝑓)𝐶1 = 𝑠 ·𝐶1 ≥ 𝑠 · 𝑥1, where we have used

the fact that 𝐶2 ≥ (𝑠/𝑓)𝐶1.

Step 3. To recap, so far we have identified two link rates

𝐶1,𝐶2 such that the CCA converges to delays in a similar

range but its sending rates are far apart on these links. In the

final step, we construct a 2-flow scenario on a shared link

with rate 𝐶1 +𝐶2 and propagation delay 𝑅𝑚 , such that the

two flows follow exactly the same trajectories we found in

Step 2. Therefore, in this scenario, the two flows converge

to throughputs 𝑥1 and 𝑥2 that satisfy our starvation criteria:

𝑥2 ≥ 𝑠 · 𝑥1.

Our starting observation is that for a deterministic CCA,
8

the sending rate at any time 𝑡 is a function of the delays

observed up to time 𝑡 and the initial state of the algorithm.

Therefore, if we can set the non-congestive delays in the 2-

flow scenario such that each flow observes a total delay that

is identical to one of the delay trajectories from Step 2, then

the two flows’ sending rates will follow the rate trajectories

from Step 2 as well. We will refer to controlling the non-

congestive delay on a flow’s path to achieve a specific delay

trajectory as emulating that delay trajectory. The question is

can we emulate the delay trajectories from Step 2 by adding

up to 𝐷 seconds of non-congestive delay to each flow’s path

in the 2-flow scenario?

To complete the construction of the 2-flow scenario, we

must specify the initial state of the two flows’ CCAs, the

initial state of the shared link’s queue, and the trajectories

of the non-congestive delay for the two flows at all times.

Let 𝑑1 (𝑡) and 𝑑2 (𝑡) be the delay trajectories and 𝑟1 (𝑡) and
𝑟2 (𝑡) be the rate trajectories achieved for links 𝐶1 and 𝐶2

respectively in Step 2. Assume that the flows converged to

their eventual delay ranges at times𝑇1 and𝑇2, as shown in the

figure 5. Define
¯𝑑1 (𝑡) = 𝑑1 (𝑡 +𝑇1), 𝑟1 (𝑡) = 𝑟1 (𝑡 +𝑇1), ¯𝑑2 (𝑡) =

𝑑2 (𝑡 +𝑇2), 𝑟2 (𝑡) = 𝑟2 (𝑡 +𝑇2) as time-shifted versions of the

delay and rate trajectories such that the time origin is set to

the time of convergence. These trajectories correspond to

the bold segments shown in the figure.

We initialize the internal state of the two flows to the

states of the corresponding flow in Step 2 at times 𝑇1 and 𝑇2.

Our goal now is to emulate the delays
¯𝑑1 (𝑡) and ¯𝑑2 (𝑡) for all

𝑡 ≥ 0 by choosing the non-congestive delay for the two flows

appropriately. Let 𝜂★
1
(𝑡) and 𝜂★

2
(𝑡) be the non-congestive

delays for flows 1 and 2 respectively, and let 𝑑★(𝑡) be the
sum of the propagation delay 𝑅𝑚 and queueing delay in the

2-flow scenario.
9
Note that 𝑑★(𝑡) is common to both flows.

To achieve emulation, we need to ensure that:𝑑★(𝑡)+𝜂★
1
(𝑡) =

¯𝑑1 (𝑡) and 𝑑★(𝑡) + 𝜂★2 (𝑡) = ¯𝑑2 (𝑡) for all 𝑡 ≥ 0.

We control 𝜂★
1
(𝑡) and 𝜂★

2
(𝑡), but what is 𝑑★(𝑡)? To get a

handle on 𝑑★(𝑡), let’s assume for the moment that our delay

emulation is successful and the two flows send precisely at

the rates 𝑟1 (𝑡) and 𝑟2 (𝑡). Then, we can compute the queueing

delay in the 2-flow scenario exactly: it is simply the delay of

a queue with net arrival rate of 𝑟1 (𝑡) + 𝑟2 (𝑡) and net drain

8
While CCAs such as BBR and PCC employ randomness, it does not mate-

rially affect the result (see §5).

9
We use a superscript★ for all signals in the 2-flow scenario.

Starvation in End-to-End Congestion Control SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

rate of 𝐶1 +𝐶2. In the proof (see Appendix A for details), we

use this observation to show that 𝑑★(𝑡) is given by:

𝑑★(𝑡) = 𝐶1

¯𝑑1 (𝑡) +𝐶2

¯𝑑1 (𝑡)
𝐶1 +𝐶2︸ ︷︷ ︸

Time-varying

− (𝛿max + 𝜖)︸ ︷︷ ︸
Constant

.

𝑑★(𝑡) has two components: (i) a time-varying part that is a

weighted average of the delay trajectories
¯𝑑1 (𝑡) and ¯𝑑2 (𝑡)

from Step 2; (ii) a constant part that depends on the initial

queueing delay chosen in the 2-flow scenario. This initial

delay is 𝑑★(0), and we are free to set it to any value ≥ 𝑅𝑚 .

In the proof, we choose this value to obtain the expression

above for 𝑑★(𝑡).
For delay emulation to succeed, we must be able to satisfy

𝑑★(𝑡) + 𝜂★𝑖 (𝑡) = ¯𝑑𝑖 (𝑡) for some 𝜂★𝑖 (𝑡) ∈ [0, 𝐷] for all 𝑡 ≥ 0

and 𝑖 ∈ {1, 2}. This can be done if and only if 𝑑★(𝑡) satisfies
two properties:

(1) 𝑑★(𝑡) ≤ min{ ¯𝑑1 (𝑡), ¯𝑑2 (𝑡)}, i.e. 𝑑★(𝑡) must be a lower

bound on
¯𝑑1 (𝑡) and ¯𝑑2 (𝑡). This guarantees that the

non-congestive delay is non-negative.

(2) max{ ¯𝑑1 (𝑡), ¯𝑑2 (𝑡)} ≤ 𝑑★(𝑡) + 𝐷 , i.e. 𝑑★(𝑡) + 𝐷 must be

an upper bound on
¯𝑑1 (𝑡) and ¯𝑑2 (𝑡). This guarantees

that the non-congestive delay is ≤ 𝐷 .

The last step of the proof shows that 𝑑★(·) defined above

satisfies both properties. We defer the details to Appendix A,

but the reason this works is that the delay values for
¯𝑑1 (𝑡)

and
¯𝑑2 (𝑡) are never too far from each other, and hence never

too far from 𝑑★(·). Figure 6 shows how 𝑑★(·) is situated
relative to

¯𝑑1 (·) and ¯𝑑2 (·) for our running example.

D
el

ay

Time

Se
nd

in
g

ra
te

Time

Weigted
average

Figure 6: How 𝑑★(·) is situated relative to
¯𝑑1 (·) and ¯𝑑2 (·) in the

example.

5 REAL-WORLD ALGORITHMS
Extreme unfairness tantamount to starvation can occur when

multiple flows share a bottleneck link but the rest of the path

they traverse is different. This section shows that starvation

is not merely theoretical, but can be observed in real-world

delay-convergent CCAs even in simple settings. The scenar-

ios we show are inspired by our proof.

We discuss several CCAs here, explaining why certain

CCAs are delay-convergent and giving their oscillation range

(i.e., 𝑑min (𝐶) and 𝑑max (𝐶)). Then we describe the trace pro-

duced by Theorem 1 to cause one of the flows to starve and

discuss how it can arise in realistic network path. Finally

we experimentally demonstrate the occurrence of starvation

using real implementations of several CCAs. The only non-

delay-convergent CCAs we are aware of are loss-based. We

discuss them as well.

We have a simple criterion for deciding whether a network

scenario is realistic. First, it should possible for a composition

of real network elements to produce the behavior. Second,

the behavior should not be a sequence of coincidences. That

is, the probability of the behavior happening should not

decrease with the duration of that behavior; if flows were

to be on such a network, one of the flows must be likely to

starve. As we we will see, the paths we come up with are

common on the Internet.

5.1 Vegas, FAST, and Copa
These CCAs all have the same equilibrium, though their dy-

namics differ. They all try to maintain a constant number

(𝛼) of packets in the queue. Even with a single flow, these

algorithms can send at a rate that is arbitrarily smaller than

the link rate. This happens when they overestimate their

queueing delay and slow down. They can overestimate their

queueing delay on paths with non-congestive delays or un-

derestimate their minimum RTT, 𝑅𝑚 .

Copa attempts to mitigate these problems by computing

queueing delay as standing RTT - min RTT, instead of latest
RTT - min RTT where standing RTT is the minimum RTT

observed over a short period of time (min RTT is the mini-

mum over a long period). Unfortunately, this method is not

robust to persistent non-congestive delay. CCAC [2] found a

way to use multiple network elements to fool this statistic

even when there is no persistent non-congestive delay in a

single network element.

The following simple scenario drives Copa to starvation.

Run a Copa flow on a 120 Mbit/s link with 𝑅𝑚 of 60 ms. Send

one packet with a 59 ms RTT to cause it to under-estimate its

minimum RTT. Here Copa achieved a throughput of 8 Mbit/s,

which was caused by a 1 ms error in measuring the delay

of one packet. We ran this experiment with the Mahimahi

emulator [32].

This single-flow phenomenon also occurs with two or

more flows, e.g., when the delay jitter happens only for one

flow. We repeat the above experiment with two flows where

only one flow gets the 59 ms packet. In this case, one flow

gets 8.8 Mbit/s while the other gets 95 Mbit/s. Vegas and

FAST can also be compromised in similar ways.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands V. Arun, M. Alizadeh, H. Balakrishnan

5.2 BBR
BBR has two modes of operation. The first mode

is the one described in the original paper [8]. Here,

BBR’s sending rate is limited by its pacing rate, which

is set to (pacing_gain)·(bandwidth_estimate). The

pacing_gain is usually 1, allowing BBR to send at its es-

timated bandwidth. Every 8 RTTs, pacing_gain is increased
to 1.25 to probe and see if more bandwidth is available. In

the RTT following this increase, pacing_gain is reduced

to 0.75 to drain any queue created during the gain. The

bandwidth_estimate variable is set to the maximum band-

width measured over the last 10 RTTs, where bandwidth is

measured by dividing the number of acknowledged bytes

over 1 RTT intervals.

If more bandwidth were available during the probe phase

(or at any other time), bandwidth_estimate would have in-

creased. The way BBR seeks to achieve fairness is by having

different flows probe at different random times, as described

in a fairness analysis document [42]. In the pacing mode,

𝑑min (𝐶) = 𝑅𝑚 and 𝑑max (𝐶) = 1.25𝑅𝑚 . If 𝐷 > 𝛿max = 0.25𝑅𝑚 ,

our network model can prevent one of the flows from rec-

ognizing that additional bandwidth is available during the

probe phase, causing it to send at a rate that is arbitrarily

small compared to its fair share. This situation is identical

to the one described in the CCAC paper [2] and happens in

the presence of a network element, such as a cellular base

station, whose bandwidth allocation lags behind the flow’s

demand. Our proof constructs exactly this behavior. By con-

trast, if 𝐷 is smaller, BBR can experience starvation in the

cwnd-limited mode as described below.

Because the bandwidth estimate uses a max filter, BBR

tends to over-estimate the link rate when ACKs do not arrive

smoothly, since there will be some RTT during which we get

greater than average rate. As a result, the queue can grow

indefinitely. To prevent such bufferbloat, BBR uses cwnd

to cap the number of in-flight packets. Hence when BBR

has overestimated the bandwidth, it is in the cwnd-limited

mode [21, 43]. In this mode, cwnd controls the behavior

and dynamics of the pacing rate and its increase/decrease

during bandwidth probing are not material to the sender’s

transmissions.

Starvation in cwnd-limited mode. Here, cwnd is set to

2·(bandwidth_estimate)·(𝑅𝑚_estimate) + 𝛼 . The 𝛼 term

is called quanta in the BBR document [9], and is intended to

“allow enough quanta in flight on the sending and receiving

hosts to reach high throughput even in environments using

offload mechanisms”. This term was removed in a later ver-

sion, but another additive term extra_acked was added in

its stead [10]. We believe that the 𝛼 term performs a critical

function in addition to the intended one; it enables fairness

in the cwnd-limited mode by forcing a unique fixed point.

We now calculate the equilibrium point for BBR on an

ideal path. At equilibrium, its bandwidth estimate equals the

ACK arrival rate, which equals the sending rate, cwnd/RTT.

Hence we have

cwnd = 2𝑅𝑚 · (bandwidth_estimate) + 𝛼
= 2𝑅𝑚 · cwnd/RTT + 𝛼

Thus, equilibrium_sending_rate = cwnd

RTT
= 𝛼

RTT−2𝑅𝑚
(Fig-

ure 3). At equilibrium, RTT > 2𝑅𝑚 , achieving full utilization.

When there is only one flow, the sending rate is𝐶 because

the link is fully utilized. This gives cwnd = 𝐶𝑅𝑚 + 𝛼 . We

can repeat this calculation for multiple flows using the ad-

ditional constraint that ACKs for the 𝑖th flow arrive at the

rate of 𝐶
𝑐𝑤𝑛𝑑𝑖∑𝑛
𝑗=1

𝑐𝑤𝑛𝑑 𝑗
. Then we get 𝑐𝑤𝑛𝑑𝑖 = 2𝐶𝑅𝑚/𝑛 + 𝛼 . At

this equilibrium, the RTT is 2𝑅𝑚 + 𝑛𝛼/𝐶 .
This behavior is similar to Vegas, FAST, and Copa where at

equilibrium the RTT is 𝑅𝑚 +𝑛𝛼/𝐶 . The only difference is that
BBR maintains an extra 𝑅𝑚 of delay. But this is an important

difference; unless BBR overestimates the congestive delay by

𝑅𝑚 , it maintains non-zero queueing delay and achieves full

utilization. By contrast, even a single Vegas/FAST/Copa flow

can under-utilize the link if it mis-estimates the RTT by 𝛼/𝐶 .
However, fairness is still achieved for BBR by the 𝑛𝛼/𝐶 term.

If we remove the +𝛼 term and recalculate the equilibrium, we

find that any value of 𝑐𝑤𝑛𝑑1 and 𝑐𝑤𝑛𝑑2 can be a fixed point

as long as 𝑐𝑤𝑛𝑑1 + 𝑐𝑤𝑛𝑑2 = 2𝑅𝑚𝐶 , even if 𝑐𝑤𝑛𝑑1 = 0 and

𝑐𝑤𝑛𝑑2 = 2𝑅𝑚𝐶! If one BBR flow is running and has occupied

the entire link, when a new flow comes, it will not achieve

its fair share. While the +𝛼 term fixes the problem, 𝑛𝛼/𝐶 is a

rather small value of delay to measure and becomes smaller

as𝐶 grows. Hence the same precision is required as in Vegas,

FAST and Copa. The analysis suggests that when flows with

different RTTs compete, the flow with the smaller RTT can

starve, as has been observed empirically [21].

Empirical evaluation. BBR is a complex protocol, spanning

900 lines of code. To confirm that our simplified theoretical

model for BBR is useful, we conducted some experiments.

We used Mahimahi [32] to run two BBR flows (implemented

in the Linux kernel v5.13.0) with 𝑅𝑚 of 40 ms and 80 ms

over a common bottleneck link of 120 Mbit/s for 60 seconds.

Since there were two BBR flows, their interaction and natural

OS jitter was enough to push them into cwnd-limited mode.

On paths without OS jitter, some other source of jitter may

be necessary to break BBR. In this situation, one flow got

an average of 8.3 Mbit/s and the other got 107 Mbit/s, an

order-of-magnitude difference in sending rates.

Delay-convergence in BBR. Strictly speaking, the cwnd-

limited mode does not meet our definition for delay-

convergent CCAs with 𝛿 (𝐶) = 0 because (1) some jitter

is necessary for this mode to be active while our definition is

Starvation in End-to-End Congestion Control SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

over ideal links and (2) BBR periodically stops transmitting

to probe for minimum RTT. During a probe, RTT falls to 𝑅𝑚 ,

so 𝛿 (𝐶) is 𝑅𝑚 ≠ 0. These are, however, mere technicalities

and the ideas behind our starvation proof still work. First,

instead of running in an ideal link, we need to run on a link

with some jitter. Second, our proof works even if the CCA

has oracular knowledge of 𝑅𝑚 ; alternatively, we can stop

emulation when the CCA is probing for RTT and the rest

of the argument holds, since BBR will ignore the data col-

lected during probe. Further, BBR uses randomness in when

it probes for bandwidth while our theorem only applies to

deterministic CCAs. However, this does not make a tangible

difference as demonstrated by the experiment above.

5.3 PCC Vivace
The PCC Vivace paper [13] showed that on an ideal link it

converges to a fair throughput allocation that fully utilizes

the link and maintains zero queueing delay. It regularly in-

creases and decreases its rate to check if that will increase its

utility function. Based on the largest constants given in the

paper this will cause the queueing delay to oscillate at most

between 𝑅𝑚 and 1.05𝑅𝑚 . These form 𝑑min (𝐶) and 𝑑max (𝐶)
with 𝛿max = 𝑅𝑚/20. PCC’s rate-delay curve is shown in

Figure 3. Like BBR, PCC also employs randomness, but it

this does not make a difference to the result. (In fact, we

conjecture that Theorem 1 is true for randomized CCAs too.)

To empirically test if PCC experiences starvation, we ran

two PCC Vivace flows in a Mahimahi emulator with 60 ms

propagation delay and 120 Mbit/s bandwidth. For one of

the flows, ACKs are received only at integer multiples of

60 ms, preventing finer delay measurement. This flow only

achieved 9.9 Mbit/s while the other flow got 99.4 Mbit/s. We

used Vivace’s kernel module for the experiments [25].
10

5.4 Loss-based CCAs
CCAs like NewReno [22] or Cubic [20] are not delay-

convergent. We study their fairness in two ways. First, we

extended CCAC to handle multiple flows (see Appendix C)

and used it to discover bad behavior when there is non-

congestive delay jitter. Second, we modify our model to allow

it to preferentially drop packets for one flow.

Let us take delay jitter first. Suppose two flows share a

bottleneck, but one of them is well-paced while the other

sends packets in bursts. This situation can occur with generic

segment offloading (GSO) [26] used by the sender for CPU

efficiency, ACK aggregation (say due toWiFi [18]), or delayed

10
We needed a relatively large jitter of 60 ms because Mahimahi is a noisy

emulator. Linux user-space scheduling adds several milliseconds of jitter to

both flows. We need the flows to have different jitter. A cleaner, less-variable

network emulation environment will produce a configuration with smaller

non-congestive jitter for starvation to occur. Similar effects prevented us

from observing a starvation ratio greater than 10:1 for other CCAs.

 0

 40

 80

 120

 0 50 100 150 200

C
w

n
d

Time (sec)

Reno

 0 50 100 150 200

Time (sec)

Cubic

Figure 7: Congestion window evolution when two flows are run

on a 6 Mbit/s, 120 ms link and 60 packets of buffer. The lower

flow’s receiver uses delayed ACKs of up to 4 packets while the

other ACKs every packet. The CCAs used are Reno (left) and

Cubic (right). The ratio of throughput obtained between the two

flows is 2.7× and 3.2× for Reno and Cubic respectively.

ACKs [5, 23]. As the queue gets nearly full, the flow that sends

packets in bursts is more likely to lose packets. When this

happens, this flow reduces its cwnd and the queue stops being

full until a while later when again the bursty flow is more

likely to lose packets. Packet bursts can reduce the utilization

even when there is only a single flow on the link, but only

when the bursts are large [2]. However when two or more

flows are present, even a small burst can cause unfairness.

This is illustrated using an ns3 [1] simulation in Figure 7. We

also reproduced similar results in emulation in Mahimahi.

One flow using delayed ACKs of just 4 packets can cause

it to get 1/3 the throughput of the other flow. Nevertheless

this is not starvation since the unfairness is bounded. In

loss-based AIMD, when the faster flow reduces its cwnd

(which it eventually must when it occupies nearly all of the

link), it gives the slower flow time to ramp up before it starts

to decrease its cwnd again. In Cubic, the faster flow will

eventually overshoot the entire bandwidth-delay product

(BDP) as governed by the cubic function. The slower flow

can only increase its cwnd and experience losses two or three

times before this happens. Hence the unfairness is bounded.

We used CCAC to prove that there is no trace of length 10

RTTs where starvation is unbounded for two AIMD flows

when the bottleneck has 1 BDP of buffer. Proving this result

for any trace length is future work.

PCC Allegro [12]. While loss-based AIMD is not delay-

convergent and is therefore immune to small delay jitter,

it converges to a loss rate as a function of the BDP [27]:

cwnd ∝ 1√
loss rate

. If we add to the network model the ability

to arbitrarily drop a small fraction of packets, we can get the

CCA to under-utilize the link when the BDP is sufficiently

large. This is well known and works even when only a single

flow is present.

PCC’s behavior is more interesting. To get around this

problem, the loss-based PCC variant, PCC Allegro, has a

loss threshold that it can tolerate. As long as the packet

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands V. Arun, M. Alizadeh, H. Balakrishnan

loss rate is lower than this threshold, it will fully utilize the

link. In our framework, this is analogous to BBR in cwnd-

limited mode always maintaining 𝑅𝑚 seconds of queueing;

as long as error in delay measurement is smaller than 𝑅𝑚 ,

BBR fully utilizes the link. Just as BBR is an improvement

to the Vegas family, PCC is a loss-resilient improvement

to the Reno family. However, just like BBR, PCC can also

experience starvation when one of the flows (but not the

other) experiences even small amounts of congestion signal;

for BBR it is propagation delay, for PCC it is random loss.

The reason is analogous; the space of loss rates is smaller

than the space of sending rates.

As empirical validation, we ran two PCC flows for 60

seconds on a 120 Mbit/s Mahimahi link with 40 ms RTT

and 1 BDP buffer. One of the flows experienced a random

loss rate of 2% and got only 10.3 Mbit/s while the other,

which experienced no random loss, got 99.1 Mbit/s. PCC is

supposed to be resilient to up to 5% loss. Indeed, when we

ran two flows with 2% loss, they shared the link fairly and

efficiently. When we ran just one flow with 2% loss, PCC was

able to fully utilize the link capacity. Like BBR, PCC breaks

only when two flows are present and experience unequal

congestion signals (here, loss). We do not believe it is possible

to circumvent this problem with algorithms that map loss

rates (or delays) to sending rates.

6 IMPLICATIONS AND NEXT STEPS
The main lesson from this paper is that to avoid starvation

delay-convergent CCAs must explicitly model and design

for non-congestive delays. This affects the design space of

CCAs in three key ways:

(1) If 𝐷 is the bound on network jitter, the CCA must

maintain at-least 𝐷 seconds of delay to be 𝑓 -efficient

(§6.1).

(2) To avoid starvation, it is not enough to maintain a

queue that is larger 𝐷 , but the variation in delay must

be larger as well (see §6.2).

(3) If we have an upper bound on the link rate, thenwe can

achieve all three objectives without large variance in

queueing delay. The delay bound achieved is a function

of 𝐷 and our maximum tolerable unfairness (§6.3).

The rest of this section expands on these ideas, and con-

cludes by proving an impossibility result for delay-bounded

(non-delay-convergent) CCAs.

6.1 Is an 𝑓 -efficient, Delay-Convergent CCA
Achievable?

Can a CCA simultaneously achieve 𝑓 -efficiency and delay-

convergence if we can tolerate starvation? The answer is

not obvious because current schemes like BBR, Copa, Vegas,

and FAST do not, as shown in the recent CCAC paper [2].

That paper found counterexamples consistent with the delay-

jitter network model of this paper showing scenarios where

𝑓 -efficiency is not achieved for any 𝑓 > 0.

We are not aware of any existing CCAs that are both

𝑓 -efficient and delay-convergent. That said, we have not

analyzed every algorithm in depth. Perhaps the best hope

is offered by BBR. The CCAC paper showed that if BBR

were modified to have a higher pacing rate, CCAC could

no longer find any example where BBR under-utilizes the

link. We believe this happens because the higher pacing rate

forces BBR to operate in the cwnd-limited mode, since the

behavior is identical to when BBR over-estimates the pacing

rate (see §5.4). In this mode, 𝑑max (𝐶) ≥ 2𝑅𝑚 , which is large.

Note, however, that CCAC did not prove that BBR is 𝑓 -

efficient. It merely ruled out the existence of under-utilization

over short (≤ 10 RTTs) sequences of network behavior. It

also assumed a sender with oracular knowledge of 𝑅𝑚 .

We conjecture, however, that it is possible to design an

𝑓 -efficient, delay-convergent CCA if we ignored starvation.

Perhaps the modified BBR is such an algorithm. Any such

CCA must maintain a larger delay than the network jitter,

or risk under-utilization. The following theorem formalizes

this.

Theorem 2. Any deterministic CCA for which there exists
a link rate 𝐶 and minimum RTT 𝑅𝑚 such that 𝑑max (𝐶) ≤ 𝐷

can experience arbitrarily low utilization in our network model
with parameter 𝐷 .

Proof. The idea is similar to our proof for Theorem 1. Let

the delay experienced by the CCA on an ideal path of rate 𝐶

and propagation delay 𝑅𝑚 be𝑑 (𝑡). Let its sending rate be 𝑟 (𝑡).
We will construct a network with propagation delay 𝑅𝑚 and

𝐶 ′ ≫ 𝐶 such that the delay experienced by the CCA is exactly

𝑑 (𝑡). As a result, the CCA will transmit at exactly 𝑟 (𝑡) since
the CCA is deterministic. This is possible because we will

choose 𝐶 ′ to be large enough that the queuing delay, 𝑞(𝑡) ≤
𝑑 (𝑡). Now 𝑑 (𝑡) ≤ 𝑑max (𝐶) ≤ 𝐷 where the first inequality

follows from the definition of 𝑑max (·). Hence 0 ≤ 𝑑 (𝑡) −
𝑞(𝑡) ≤ 𝐷 , which is the condition we need for emulation.

Since the actual link rate, 𝐶 ′, can be arbitrarily larger than

the rate ≈ 𝐶 at which the CCA sends, starvation occurs. □

6.2 Larger Oscillations May Avoid
Starvation

Theorem 1 shows that a CCA whose ideal-path delay vari-

ation, 𝛿max
, is smaller than one-half of the non-congestive

delay in the network,𝐷 , cannot simultaneously be 𝑓 -efficient,

bound delays, and avoid starvation. Hence the only way to

achieve all three properties is to design a CCA that has large

delay variation on ideal paths (i.e., at equilibrium).

Why might large delay variations avoid starvation? The

reason why CCAs with small variations starve is that there

Starvation in End-to-End Congestion Control SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

isn’t enough space to assign all achievable rates to distinct-

enough delay ranges. This is because once a CCA has con-

verged to a small delay range, it keeps receiving the same

signal over and over. It cannot distinguish delay variations

due to congestion from those due to non-congestive jitter.

Delay

0

Measured delay
Range in which

(congestive delay +)
can lie

Discrete blocks in
which delay can lie

An imprecise but useful mental model is to think of mea-

surement ambiguity as discretizing measurement. When we

measure an RTT of 𝑑 , we know that up to 𝐷 of it may be

non-congestive. The material portion of 𝑑 for our purposes

is in the range [max(0, 𝑑 − 𝐷), 𝑑]. Let us divide the RTT 𝑑

into discrete blocks of size 𝐷 . This range tells us that the

correct (congestive delay + 𝑅𝑚) must lie in one of the

two blocks highlighted in the picture above.

A delay-convergent algorithm with 𝛿max ≤ 𝐷 gets the

same set of blocks over and over again. But one with larger

variation can get different blocks/bits of information each

time. This forms an infinitely large stream of bits in which

to encode the correct sending rate. Different bit streams

can now be assigned to different sending rates. This helps

sidestep the pigeonhole argument, which forms the bedrock

of our impossibility proof.

For instance, sending rate can be encoded in the frequency
of oscillation of delay, rather than its absolute value. Given

enough samples, it may be possible to measure frequency

with arbitrary precision, avoiding starvation. Loss-based al-

gorithms like AIMD do this; AIMD’s sending rate is deter-

mined by the frequency at which packets drop. While our

analysis does not include packet losses, it is interesting to

note that AIMD has large oscillations relative to 𝐷 . Hence

smaller delay jitter does cause starvation (§5.4). If the oscil-

lations (and hence the buffer size) were smaller than 𝐷 , it

is indeed possible to starve AIMD; one flow always sends

packets in bursts that are larger than the buffer, experiencing

drops, while the other flow grows its cwnd to be arbitrar-

ily larger than the first flow. We conjecture that AIMD on

delay is an interesting design space for researchers to seek

starvation-free CCAs.

6.3 Avoiding Starvation in a Bounded Rate
Range

ACCA that seeks to converge to a small range of delays must

map sending rates that are far away to delays that are more

than 𝐷 apart, or risk starvation. While this is not possible for

an infinitely large range of rates, it becomes possible if we

know that the correct sending rate will come from a bounded

range. In practice, we may know such bounds a priori from
a knowledge of network parameters (e.g., access link rate at

the sender) or by profiling applications.

Rather than worry about perfect flow-level fairness, which

might not be an interesting goal in practice [7], we seek

to be 𝑠-fair; i.e., bound unfairness to a maximum specified

throughput ratio of 𝑠 > 1. For a given 𝐷 , and maximum

tolerable delay 𝑅max
, we define a figure-of-merit for a rate-

delay curve as the ratio of the maximum rate it supports to

the minimum:
𝜇+
𝜇−
. Rates in today’s Internet can span several

orders of magnitude, from < 100 Kbit/s to ≈ 10 Gbit/s. Hence

having
𝜇+
𝜇−
≥ 10

3
and perhaps ≈ 10

5
is desirable.

For Vegas, FAST, and Copa, the rate-delay function is

𝜇 (𝑑) = 𝛼/(𝑑 −𝑅𝑚), where 𝜇 is the sending rate [3]. The func-
tion for BBR’s cwnd-limited mode is 𝜇 (𝑑) = 𝛼/(𝑑−2𝑅𝑚). The
arguments in this section are similar for both these functions,

so we analyze the Vegas/FAST/Copa function here.

To achieve 𝑠-fairness for all 𝜇 ∈ [𝜇−, 𝜇+], we want the

difference in the delays seen between 𝜇 and 𝑠𝜇 to exceed 𝐷 .

This gap will ensure that rates that are more than 𝑠 away

from each other are mapped to distinguishable delays. The

difference in delays for our rate-delay function is:(
𝑅𝑚 +

𝛼

𝜇

)
−
(
𝑅𝑚 +

𝛼

𝑠𝜇

)
> 𝐷

⇒𝜇 <
𝛼

𝐷

(
1 − 1

𝑠

)
.

This gives us 𝜇+. 𝜇− is the rate corresponding to 𝑑 = 𝑅max
, so

𝜇− = 𝛼/(𝑅max − 2𝑅𝑚). Hence, for the Vegas family,

𝜇+
𝜇−

=
𝑅max − 𝑅𝑚

𝐷

(
1 − 1

𝑠

)
= 𝑂

(
𝑅max

𝐷

)
. (1)

We propose an alternate rate-delay function that does

much better:

𝜇 (𝑑) = 𝜇−𝑠
𝑅max−𝑑

𝐷 (2)

When 𝑑 = 𝑅max
, 𝜇 = 𝜇− as desired. 𝜇+ occurs when

𝑑 = 𝑅𝑚 + 𝐷 . This is the minimum RTT required to ensure

full utilization (Theorem 2). Hence, 𝜇+ = 𝜇−𝑠 (𝑅
max−(𝑅𝑚+𝐷))/𝐷

.

Thus,

𝜇+
𝜇−

= 𝑠
𝑅max−𝑅𝑚−𝐷

𝐷 = 𝑂

(
𝑠
𝑅max

𝐷

)
.

This range is exponentially larger than the Vegas family and

can span several orders of magnitude of link rates, as desired.

For instance, for 𝐷 = 10, 𝑠 = 2 and 𝑅max = 100 ms we can

support a range of 2
10 ≈ 10

3
. With 𝑠 = 4, that increases to

2
20 ≈ 10

6
.

A real-world CCA may make the following modifications

to this rate-delay curve. (1) This function never increases its

rate beyond 𝜇+. This is simply solved by using a Vegas-like

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands V. Arun, M. Alizadeh, H. Balakrishnan

function for 𝑑 < 𝐷 that goes to infinity. Such a CCA will

scale to arbitrarily large link rates, but risk starvation when

rate exceeds 𝜇+. (2) If the CCAs have amethod to estimate𝑅𝑚 ,

they can set 𝑅max
as a function of 𝑅𝑚 : e.g. 𝑅

max = 𝑅𝑚 + 100

ms. Note that both Equation 2 and the Vegas family can send

at rates lower than 𝜇−, but will increase delay beyond 𝑅max
.

For rates < 𝜇−, delays increase more slowly for the Vegas

family than for Equation 2.

Algorithm 1 A delay-convergent CCA that uses

𝜇−𝑠
𝑅max−(𝑑−𝑅𝑚)

𝐷 . The following is run every 𝑅𝑚 . Here, 𝑑

is the latest measured RTT, 𝜇 is the current sending rate and

𝑎, 0 < 𝑏 < 1, 𝜇−, 𝑅max
are parameters of the algorithm.

if 𝜇 < 𝜇−𝑠
𝑅max−(𝑑−𝑅𝑚)

𝐷 then
𝜇 ← 𝜇 + 𝑎

else
𝜇 ← 𝑏𝜇

end if

An Algorithm. Algorithm 1 shows a CCA that uses Equa-

tion 2. This algorithm is incomplete on several fronts. It does

not feature a mechanism to discover 𝑅𝑚 or handle short

buffers by slowing down in the presence of loss. It increases

its rate additively, and does not feature the faster increase

times of modern algorithms. It does not have a cwnd cap to

be resilient to sudden drops in link capacity [4]. We show

this merely to illustrate an idea, not propose a deployable

CCA.

To verify this algorithm, we used CCAC to produce traces

where the algorithm is either inefficient ormore than 𝑠-unfair.

CCAC was unable to produce such traces, giving us some

confidence that the key ideas work. CCAC helped us fine-

tune some details of the algorithm such as (a) use AIMD

instead of the AIAD used by Vegas and Copa because the

fairness properties of AIMD are critical in the presence of

measurement ambiguity and (b) change the rate by the same

amount every RTT independent of the number of ACKs

received. Note that this does not constitute a complete proof,

since CCAC only searched over finite traces. We have not yet

performed the steady-state analysis described in the CCAC

paper.

Estimating 𝑅𝑚 is a challenge for any delay-convergent

CCA, which may require fundamental new insights from

the community to overcome. Estimating 𝑅𝑚 is hard because

it requires all flows to coordinate and empty the queue at

the same time. Copa’s mechanism works well in the absence

of delay ambiguity, but not otherwise. BBR’s mechanism

works when there is a single flow, but its RTT probe does

not always succeed in coordinating across multiple flows.

6.4 Explicit Signaling
Some routers set ECN bits [14] in packets when they detect

congestion. Unlike delay and loss, which can occur for rea-

sons other than congestion, ECN is an unambiguous signal of

congestion. Hence ECN may help CCAs avoid starvation. As

evidence, consider our analysis of NewReno in Section 5.4.

CCAC indicated that when non-congestive delay jitter is

present, but losses only occur due to buffer overflow, AIMD

does not starve. When non-congestive loss is present, AIMD,

Cubic and PCC Allegro all suffer starvation. If the router

set ECN bits when the queue exceeds a threshold, and a

CCA reacted to that and not to small amounts of loss, then

it may avoid starvation. AQM mechanisms are more sophis-

ticated than the simple threshold-based heuristic discussed

above [16, 33, 35]. We conjecture that such AQM mecha-

nisms, coupled with CCAs that ignore small amounts of loss,

can prevent starvation.

6.5 An Absolute Upper Bound
We have also proved that no deterministic CCA can be si-

multaneously 𝑓 -efficient, delay-bounding (but not delay-

convergent, i.e., the delay can have large oscillations over

ideal links), and starvation-free. This theorem uses a stronger

network model than in Section 3; here the adversary can also

vary the link rate arbitrarily. We call this the “strong” model.

Since there are no bounds on the link rates, this adversary is

very powerful. Perhaps too powerful, for it can create unre-

alistic networks. Thus we still believe that it may be possible

to achieve all three properties on practical networks. Never-
theless, it serves as a useful upper bound on what is possible.

The proof technique is interesting in that we have found it

instructive to study the network paths it constructs. It often

constructs paths similar to ones constructed by Theorem 1,

i.e., consistent with our simpler network model.

Theorem 3. Any deterministic, 𝑓 -efficient, delay-bounding
CCA will starve in the strong model for any value of the prop-
agation delay 𝑅𝑚 .

The proof is given in Appendix B. This theorem does not

need to control the initial conditions or require both CCAs

to be the same.

7 RELATEDWORK
Congestion control has been subject to extensive theoretical

analysis using both deterministic and statistical models of

the network [11, 27, 39]. Almost all CCAs, either implicitly

or explicitly, converge to some fixed point. This fixed point

may be expressed in terms of the loss rate, delay, or send-

ing rate, or ACK arrival rate. Many papers study these fixed

points. Some assume there is a single bottleneck [3, 6, 8, 12]

Starvation in End-to-End Congestion Control SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

while others generalize to networks with multiple bottle-

necks [37, 44]. The network utility maximization (NUM)

framework shows that CCAs can often optimize a global

utility function [30, 34]. There has also been work in under-

standing how different CCAs can coexist, either with a goal

to get them to share bandwidth equitably [3, 15, 19, 20, 43]

or to deliberately cause unfairness to give different priorities

to different flows [28, 31, 38].

Prior work has analyzed the ability of delay and ECN to

create unique fixed points that flows can converge to and

their stability once converged [40, 51]. These papers prove,

for instance, that a CCA that converges to a time-invariant

delay that does not change with the number of senders can-

not be fair. Another body of work examines which CCA

properties can be achieved simultaneously [49, 50]. Prior

work has analyzed CCAs on non-ideal paths with packet

loss, but to our knowledge this is the first paper with a theo-

retical analysis of paths with non-congestive delay jitter.

Empirical studies have noted unfairness that is higher than

expected [36], including BBR’s extreme RTT unfairness [21].

By contrast to the recent CCAC paper [2], we analyze and

prove results about multiple flows using different proof tech-

niques and a simpler network model (i.e., the network model

here is capable of doing less than CCAC’s, so our impos-

sibility result holds in the CCAC model too). We became

interested in proving the impossibility result of this paper

when we failed to find any CCA that CCAC’s automated

verifier could not break.

8 CONCLUSION
This paper identified a surprising problem with a design

pattern used by most (if not all) delay-bounding CCAs. We

proved that all delay-convergent CCAs are susceptible to

starvation and characterized the conditions under which

starvation is inevitable.

We offer three key conclusions for CCA designers, who

should model (or better estimate) non-congestive delays ex-

plicitly in delay-convergent CCAs. First, to utilize the link

efficiently, a CCA must maintain a queue that is larger than

the non-congestive delay on the path; second, this alone is

not enough to avoid starvation, but in addition the variation

in the queueing delay in steady state must also be greater

than one-half of the delay jitter; and third, if we have a prior

upper bound on sending rate, we may be able to avoid star-

vation while also reducing the queueing delay variation.

It is also possible that purely end-to-end CCAs might al-

ways suffer from the issues we found, and in-network sup-

port such as active queue management, explicit congestion

signaling, or stronger isolation is required. At any rate, we

think new ideas are needed here to sidestep our starvation

result. Section 6 presented ideas that may be useful in this

task.

This work does not raise any ethical issues.

ACKNOWLEDGMENTS
We thank Anup Agarwal, Rahul Bothra, Miguel Ferriera,

Prateesh Goyal, Manya Ghobadi, Zili Meng, Radhika Mittal,

Akshay Narayan, Sudarsanan Rajasekaran, Ahmed Saeed,

Keith Winstein, the SIGCOMM 2022 reviewers, and Steve

Uhlig (the paper’s shepherd) for their feedback on this

work. The NASA University Leadership Initiative (grant

#80NSSC20M0163) provided funds to assist the authors with

their research, but this article solely reflects the opinions and

conclusions of its authors and not any NASA entity. This

work was also partially funded by NSF award #1751009.

REFERENCES
[1] Accessed 2021. The ns-3 simulator. https://nsnam.org/. (Accessed

2021).

[2] Venkat Arun, Mina Arashloo, Ahmed Saeed, Mohammad Alizadeh,

and Hari Balakrishnan. 2021. Toward Formally Verifying Congestion

Control Behavior. In SIGCOMM.

[3] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical delay-based

congestion control for the internet. In NSDI.
[4] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker. 2001. Dynamic

Behavior of Slowly-Responsive Congestion Control Algorithms. In

SIGCOMM.

[5] R Braden. 1989. Requirements for Internet Hosts – Communication

Layers. IETF (1989). RFC 1122, Section 4.2.3.2.

[6] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. 1994. TCP Vegas: New

Techniques for Congestion Detection and Avoidance. In SIGCOMM.

[7] Bob Briscoe. 2007. Flow Rate Fairness: Dismantling a Religion. ACM
SIGCOMM Computer Communication Review 37, 2 (2007), 63–74.

[8] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas

Yeganeh, and Van Jacobson. 2016. BBR: Congestion-based conges-

tion control. In ACM Queue. 58–66.
[9] Neal Cardwell, Yuchung Cheng, S. Hassas Yeganeth, Ian Swett,

and Van Jacobson. 2017. BBR Congestion Control, version 1.

IETF Internet Draft. (2017). https://datatracker.ietf.org/doc/html/

draft-cardwell-iccrg-bbr-congestion-control-00#section-4.2.3.2 Sec-

tion 4.2.3.2.

[10] Neal Cardwell, Yuchung Cheng, S. Hassas Yeganeth, Ian Swett,

and Van Jacobson. 2021. BBR Congestion Control, version 2.

IETF Internet Draft. (2021). https://datatracker.ietf.org/doc/html/

draft-cardwell-iccrg-bbr-congestion-control-01#section-4.6.4.2 Sec-

tion 4.6.4.2.

[11] D-M. Chiu and R. Jain. 1989. Analysis of the Increase and Decrease Al-

gorithms for Congestion Avoidance in Computer Networks. Computer
Networks and ISDN Systems 17, 1–14.

[12] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael

Schapira. 2015. PCC: Re-architecting Congestion Control for Consis-

tent High Performance. In NSDI.
[13] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,

Brighten Godfrey, and Michael Schapira. 2018. PCC Vivace: Online-

learning Congestion Control. In NSDI.
[14] Sally Floyd. 1994. TCP and Explicit Congestion Notification. ACM

SIGCOMM CCR 24, 5 (1994), 8–23.

https://nsnam.org/
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00#section-4.2.3.2
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00#section-4.2.3.2
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-01#section-4.6.4.2
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-01#section-4.6.4.2

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands V. Arun, M. Alizadeh, H. Balakrishnan

[15] S. Floyd, M. Handley, J. Padhye, and J. Widmer. 2000. Equation-Based

Congestion Control for Unicast Applications. In SIGCOMM.

[16] Sally Floyd and Van Jacobson. 1993. Random Early Detection Gateways

for Congestion Avoidance. IEEE/ACM Trans. on Networking 1, 4 (1993),

397–413.

[17] Jim Gettys. 2011. Bufferbloat: Dark Buffers in the Internet. IEEE
Internet Computing 15, 3 (2011), 96–96.

[18] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mohammad Alizadeh,

and Hari Balakrishnan. 2020. ABC: A Simple Explicit Congestion

Controller for Wireless Networks. In NSDI.
[19] Prateesh Goyal, Akshay Narayan, Frank Cangialosi, Srinivas Narayana,

Mohammad Alizadeh, and Hari Balakrishnan. 2022. Elasticity detec-

tion: A building block for internet congestion control. In SIGCOMM.

[20] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A New TCP-

Friendly High-Speed TCP Variant. ACM SIGOPS Operating System
Review 42, 5 (July 2008), 64–74.

[21] Mario Hock, Roland Bless, and Martina Zitterbart. 2017. Experimental

evaluation of BBR congestion control. In ICNP.
[22] Janey C Hoe. 1996. Improving the Start-up Behavior of a Congestion

Control Scheme for TCP. In ACM SIGCOMM 1996. 270–280.
[23] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multi-

plexed and Secure Transport. IETF (2021). RFC 9000.

[24] Van Jacobson. 1988. Congestion Avoidance and Control. In SIGCOMM.

[25] Nathan Jay, Tomer Gilad, Nogah Frankel, Tong Meng, Brighten God-

frey,Michael Schapira, JaeWonChung, Vikram Siwach, and Jamal Hadi

Salim. 2018. A PCC-Vivace Kernel Module for Congestion Control.

(2018).

[26] Linux 2021. Linux Networking Documentation/Segmentation offloads.

(2021).

[27] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott.

1997. The macroscopic behavior of the TCP congestion avoidance

algorithm. ACM SIGCOMM CCR 27, 3, 67–82.

[28] Tong Meng, Neta Rozen Schiff, P Brighten Godfrey, and Michael

Schapira. 2020. PCC Proteus: Scavenger Transport and Beyond. In

SIGCOMM.

[29] Radhika Mittal, Nandita Dukkipati, Emily Blem, HassanWassel, Monia

Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, David Zats,

et al. 2015. TIMELY: RTT-based Congestion Control for the Datacenter.

In SIGCOMM.

[30] Kanthi Nagaraj, Dinesh Bharadia, Hongzi Mao, Sandeep Chinchali,

Mohammad Alizadeh, and Sachin Katti. 2016. Numfabric: Fast and

Flexible Bandwidth Allocation in Datacenters. In SIGCOMM.

[31] Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichandra Addanki,

Mehrdad Khani, Prateesh Goyal, and Mohammad Alizadeh. 2019. End-

to-end transport for video QoE fairness. In SIGCOMM.

[32] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith

Winstein, James Mickens, and Hari Balakrishnan. 2015. Mahimahi:

Accurate Record-and-Replay for HTTP. In USENIX ATC.
[33] Kathleen Nichols, Van Jacobson, Andrew McGregor, and Jana Iyengar.

2018. Controlled Delay Active Queue Management. Technical Report.
[34] Daniel Pérez Palomar and Mung Chiang. 2006. A tutorial on decom-

position methods for network utility maximization. IEEE Journal on
Selected Areas in Communications 24, 8 (2006), 1439–1451.

[35] Rong Pan, Preethi Natarajan, Chiara Piglione, Mythili Suryanarayana

Prabhu, Vijay Subramanian, Fred Baker, and Bill VerSteeg. 2013. PIE:

A Lightweight Control Scheme to Address the Bufferbloat Problem. In

14th International Conf. on High Performance Switching and Routing
(HPSR).

[36] Adithya Abraham Philip, Ranysha Ware, Rukshani Athapathu, Justine

Sherry, and Vyas Sekar. 2021. Revisiting TCP congestion control

throughput models & fairness properties at scale. In IMC.

[37] Jordi Ros-Giralt, Noah Amsel, Sruthi Yellamraju, James Ezick, Richard

Lethin, Yuang Jiang, Aosong Feng, Leandros Tassiulas, Zhenguo Wu,

Min Yeh Teh, et al. 2021. A Quantitative Theory of Bottleneck Struc-

tures for Data Networks. IEEE Transactions on Networking (under
review) (2021).

[38] Sea Shalunov, Greg Hazel, Janardhan Iyengar, Mirja Kuehlewind, et al.

2012. Low extra delay background transport (LEDBAT). In RFC 6817.
[39] R. Srikant. 2004. The Mathematics of Internet Congestion Control.

Springer Science & Business Media.

[40] Mohit P Tahiliani, Vishal Misra, and KK Ramakrishnan. 2019. A Princi-

pled Look at the Utility of Feedback in Congestion Control. InWorkshop
on Buffer Sizing.

[41] Kun Tan, Jingmin Song, Qian Zhang, and Murad Sridharan. 2006. A

Compound TCP Approach for High-speed and Long Distance Net-

works. In INFOCOM.

[42] The Google BBR Team. 2018. BBR bandwidth based conver-

gence. https://github.com/google/bbr, commit 87d8587c50, Documen-

tation/bbr_bandwidth_based_convergence.pdf. (2018).

[43] Ranysha Ware, Matthew K Mukerjee, Srinivasan Seshan, and Justine

Sherry. 2019. Beyond Jain’s Fairness Index: Setting the Bar For The

Deployment of Congestion Control Algorithms. In HotNets. 17–24.
[44] D.X. Wei, C. Jin, S.H. Low, and S. Hegde. 2006. FAST TCP: Motiva-

tion, Architecture, Algorithms, Performance. IEEE/ACM Trans. on
Networking 14, 6 (2006), 1246–1259.

[45] Keith Winstein and Hari Balakrishnan. 2013. TCP ex Machina:

Computer-Generated Congestion Control. In SIGCOMM.

[46] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013.

Stochastic Forecasts Achieve High Throughput and Low Delay over

Cellular Networks. In NSDI. 459–471.
[47] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby,

Philip Levis, and Keith Winstein. 2018. Pantheon: the training ground

for Internet congestion-control research. In USENIX ATC.
[48] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subrama-

nian, and Carmelita Görg. 2015. Adaptive Congestion Control for

Unpredictable Cellular Networks. In SIGCOMM.

[49] Doron Zarchy, Radhika Mittal, Michael Schapira, and Scott Shenker.

2017. An Axiomatic Approach to Congestion Control. In HotNets.
[50] Doron Zarchy, Radhika Mittal, Michael Schapira, and Scott Shenker.

2019. Axiomatizing Congestion Control. ACM POMACS 3, 2 (2019),
1–33.

[51] Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra Padhye. 2016.

ECN or Delay: Lessons Learnt from Analysis of DCQCN and TIMELY.

In CoNEXT.
Appendices are supporting material that has not

been peer-reviewed.

A PROOF OF STARVATION OF
DELAY-CONVERGENT ALGORITHMS

We will now fill in the details of the proof sketch discussed

in section 4. The theorem is restated here for convenience:

Theorem 1 For any deterministic, 𝑓 -efficient, delay-

convergent CCAA, any propagation delay 𝑅𝑚 , any through-

put ratio 𝑠 ≥ 1, and any 𝐷 > 2𝛿max
, there exists a network

scenario with two flows (specified via two per-flow initial

states and trajectories of non-congestive delays), such that

one flow gets a throughput 𝑥1 and the other flow gets a

throughput 𝑥2 ≥ 𝑠 · 𝑥1.

https://github.com/google/bbr

Starvation in End-to-End Congestion Control SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Proof. Steps 1 and 2 of the proof in Section 4 are complete.

That section omitted details from step 3, which we now fill.

Recall that in step 2, we created two different ideal links
where the flows running by themselves will achieve through-

puts that are more than a factor 𝑠 different. The key is that

the delay the flows experience both lie within a range of size

𝛿max +𝜖 . Now we will run both these flows on the same FIFO
queue as in our model. We will pick the starting states for

the two flows to be the same as the state after they have

converged, that is their state at times 𝑇1 and 𝑇2 respectively.

Next we pick the initial queue length and vary the non-

deterministic per-flow delay such that the delay they experi-

ence is the same as they experienced in the one-flow case.

Since the CCA is deterministic, their sending rates will be

identical. It remains for us to show we can indeed recreate

the same delay.

Let 𝜖 = 𝐷/2−𝛿max > 0. There are two cases based on how

min(𝑑min (𝐶1), 𝑑min (𝐶2)) compares with 𝑅𝑚 + 𝛿max + 𝜖 .

Case 1: min(𝑑min (𝐶1), 𝑑min (𝐶2)) > 𝑅𝑚 + 𝛿max + 𝜖 . In this

case we will run both flows on a common link with propaga-

tion delay 𝑅𝑚 and bottleneck link rate 𝐶1 +𝐶2. When flow

𝑖 ∈ {1, 2} is running on an ideal path by itself, the derivative

of the delay it experiences is
¯𝑑 ′𝑖 (𝑡) =

d
¯𝑑𝑖 (𝑡)
d𝑡

= (𝑟𝑖 (𝑡) −𝐶𝑖)/𝐶𝑖 .

This is because
¯𝑑𝑖 (𝑡) ≥ 𝑑min (𝐶𝑖) > 𝑅𝑚 and the queue is never

empty. Let us calculate the queuing delay at a link with ca-

pacity 𝐶1 + 𝐶2 when packets from the two flows arrive at

rates 𝑟1 (𝑡) and 𝑟2 (𝑡). Let 𝑑★(𝑡) be the delay experienced in

the combined two-flow network. If 𝑑★(𝑡) > 𝑅𝑚 , we have:

d𝑑★(𝑡)
d𝑡

=
𝑟1 (𝑡) + 𝑟2 (𝑡) − (𝐶1 +𝐶2)

𝐶1 +𝐶2

(3)

= ¯𝑑 ′
1
(𝑡) 𝐶1

𝐶1 +𝐶2

+ ¯𝑑 ′
2
(𝑡) 𝐶2

𝐶1 +𝐶2

(4)

Hence
d𝑑★ (𝑡)

d𝑡
is a weighted average of

¯𝑑 ′
1
(𝑡) and ¯𝑑 ′

2
(𝑡) with

weights 𝐶1 and 𝐶2 respectively. Since we are allowed to set

the initial conditions, we set the initial queue length:

𝑑★(0) = ¯𝑑1 (0)
𝐶1

𝐶1 +𝐶2

+ ¯𝑑2 (0)
𝐶2

𝐶2 +𝐶2

− 𝛿max − 𝜖

Since we assumed 𝑑1 (𝑡), 𝑑2 (𝑡) > 𝛿max + 𝜖 in our case anal-

ysis, subtracting 𝛿max +𝜖 still leaves us with 𝑑★(0) > 𝑅𝑚 and

Equation (3) applies. The above equation continues to hold

for all 𝑡 , as 𝑑★ continues to follow (3) by induction over 𝑡 .11

Hence:

𝑑★(𝑡) = ¯𝑑1 (𝑡)
𝐶1

𝐶1 +𝐶2

+ ¯𝑑2 (𝑡)
𝐶2

𝐶1 +𝐶2

− (𝛿max + 𝜖) (5)

11𝑡 is real and hence cannot support induction. However if we discretize

time into infinitesimally small pieces, we can apply induction at each step.

Having derived the above expression, we have completed

one of the tasks we had left unfinished in Section 4. The other

task we had deferred in Section 4 was to prove that we will al-

ways be able to emulate delay. To do this, we deferred proving

(1) 𝑑★(𝑡) ≤ min{ ¯𝑑1 (𝑡), ¯𝑑2 (𝑡)} and (2) max{ ¯𝑑1 (𝑡), ¯𝑑2 (𝑡)} ≤
𝑑★(𝑡) + 𝐷 . This is equivalent to:

0 ≤ ¯𝑑𝑖 (𝑡) − 𝑑★(𝑡) ≤ 𝐷 = 2𝛿max + 2𝜖

for 𝑖 ∈ {1, 2}. Note that both ¯𝑑1 (𝑡) and ¯𝑑2 (𝑡) lie in a common

region of size 𝛿max + 𝜖 for a given 𝑡 . Therefore so does their

weighted average, (𝑑★(𝑡) + 𝛿max + 𝜖). The fact that they all

lie in this region implies that the gap between any two of

the three quantities is ≤ 𝛿max +𝜖 . Thus, the −(𝛿max +𝜖) term
in Equation (5) brings 𝑑★(𝑡) below the minimum value of

both
¯𝑑𝑖 (𝑡). Hence 𝑑★(𝑡) < ¯𝑑𝑖 (𝑡) as required. Further, ¯𝑑𝑖 (𝑡) ≤

𝑑★(𝑡) +𝐷 (note, 𝐷 = 2𝛿max + 2𝜖). The reason is illustrated in

the diagram below:

Region in which
 and their

weighted average lie

0 Region in which lies
because we subtracted

Thus we can emulate the two-flow network to make each

flow think they are in ideal links of widely different capacities.

Hence starvation will ensue.

Case 2: min(𝑑min (𝐶1), 𝑑min (𝐶2)) ≤ 𝑅𝑚 + 𝛿max + 𝜖 . This is
the easy case. Since both the delays lie within an interval of

size 𝛿max + 𝜖 , we have that ¯𝑑1 (𝑡), ¯𝑑2 (𝑡) ≤ 𝑅𝑚 + 2𝛿max + 2𝜖 =

𝑅𝑚 + 𝐷 . This means that if the queuing delay in the two-

flow bottleneck were always 0, the non-deterministic delay

element alone can emulate both the delays. Hence we simply

pick a link rate that is large enough that 𝑑★(𝑡) ≤ ¯𝑑𝑖 (𝑡) for
𝑖 ∈ {1, 2}.

Note, in this case we can prove something stronger than

starvation; the CCA isn’t even 𝑓 -efficient in our network

model (though it is 𝑓 -efficient for an ideal path with zero

non-congestive delay). We can have a very large link rate,

emulate
¯𝑑1 (𝑡) entirely using non-congestive delay and induce

the CCA to transmit at rate ≤ 𝐶1. Since the link rate can be

arbitrarily large, this causes arbitrarily bad underutilization.

This was the content of Theorem 2. □

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands V. Arun, M. Alizadeh, H. Balakrishnan

B PROOF OF THE ABSOLUTE UPPER
BOUND

We re-state and prove the theorem discussed in Section 6.5.

Theorem 3Any deterministic, 𝑓 -efficient, delay-bounding

CCA will starve in the strong model for any value of the

propagation delay 𝑅𝑚 .

Proof. We will construct a sequence of single-flow net-

work traces that will eventually let us construct a two-flow

trace that causes starvation. We pick an arbitrary rate 𝜆.

Then, for our first trace, we run the CCA on an ideal link

with rate 𝜆 and propagation delay 𝑅𝑚 . Let the delay and

sending rate in this case be 𝑑1 (𝑡) and 𝑟1 (𝑡) respectively. Let
𝐷 = max𝑡 ∈[0,∞)𝑑1 (𝑡) be the maximum delay experienced.

12

Note that by varying the link rate, the adversary can create

any queuing delay pattern it likes. This is because it can delay
every packet by any amount it likes. Since it is a FIFO queue,

it cannot reorder packets. Hence it cannot preferentially send

packets of one flow over the other; both flows experience

the same delay at the queue. Thus the theorem statement is

not vacuously true.

We construct the next single-flow behavior by causing the

queuing delay to be 𝑑2 (𝑡) = max(0, 𝑑1 (𝑡) −𝐷). If the ratio of
throughputs between the first and second case is more than

𝑠 or less than 1/𝑠 infinitely many times (according to the

theorem statement), we are done. We can run the two flows

on the same FIFO queue where the link causes a queuing

delay of 𝑑1 (𝑡) −𝐷 . Then the non-deterministic delay element

adds 𝐷 seconds of delay to one flow’s packets and 0 seconds

of delay to another flow’s packets. Since the flows see exactly

the same delays as they in the single-flow case, 𝑑1 (𝑡) and
𝑑2 (𝑡), they behave exactly the same way. Hence they achieve

throughputs that are more than a factor 𝑠 apart.

If not, we construct a third trace where the queuing delay

is max(0, 𝑑2 (𝑡) − 𝐷). If the throughputs of the second and

third trace differ by a ratio of more than 𝑠 , again we are

done. Else we continue on. In at most 𝑛 = ⌈𝑄/𝐷⌉ such steps,

we would have either succeeded in causing starvation or

reached 𝑑𝑛 (𝑡) = 0.

We claim that because the CCA is 𝑓 -efficient, when𝑑𝑛 (𝑡) =
0, the throughput should increase to infinity. That is, for all

times 𝑡 and rate 𝜆′, there exists a time 𝑡 ′ > 𝑡 such that the

12
Strictly speaking, we should use the least upper bound, since themaximum

may not exist.

total number of bytes transmitted is greater than 𝑡 ′𝜆′. This
is because, for a sufficiently large link rate, 𝑑𝑛 (𝑡) = 0. At this

link rate, if the throughput achieved by the CCA is finite, the

CCA can under-utilize by an arbitrary amount as the link

rate increases. Here, by “finite” we mean that there exists a

𝜆′ such that for all times 𝑡 , the number of bytes transmitted

till 𝑡 is less than 𝜆′𝑡 . This violates our 𝑓 -efficiency definition.

Now if the throughput for the 𝑛𝑡ℎ trace reaches infinity, at

some point in between the ratio of must have been greater

than 𝑠 . □

C CCAC EXTENSION
To study starvation, we extended CCAC [2] to handle multi-

ple flows. This turned out to be fairly straightforward. CCAC

tracks, among other things, the number of bytes that have

arrived at its bottleneck 𝐴(𝑡), and the number of bytes that

have been served from it 𝑆 (𝑡). To extend it to multiple flows,

we have to maintain separate functions, one for each flow.

So we have

∑
𝑖 𝐴𝑖 (𝑡) = 𝐴(𝑡) and ∑

𝑖 𝑆𝑖 (𝑡) = 𝑆 (𝑡).
At time 𝑡 , when a total of 𝑆 (𝑡) bytes have been served, we

need to determine how many bytes have been served per-
flow. Ideally, we’d like to emulate a FIFO queue. Let 𝑡 ′ be the
time at which 𝑆 (𝑡) = 𝐴(𝑡 ′). Then we’d want 𝑆𝑖 (𝑡) = 𝐴𝑖 (𝑡 ′),
because that is when those packets of that flow must have

entered the queue. Doing this directly requires us to intersect

two lines, the equation for which involves the multiplication

of two SMT variables. As a general rule, SMT solvers tend to

not be very good at solving for non-linear constraints. We

found that this rule applies to CCAC as well.

To get around this, we used the same relaxation method

proposed in the CCAC paper. CCAC discretizes time rel-

atively coarsely. It then ensures that the set of behaviors

admitted in the discrete model is a super-set of the behaviors

admitted in the continuous model. This way, any theorems

proved in the discrete model also hold in the continuous

model. However the discrete model may contain behaviors

that the continuous model does not. Hence one must be

careful to not make the discrete set too large.
We found the following approach to strike a good balance

between ease of SMT modelling and not deviating too far

from the continuous model. We merely ensured that if the

queuing delay at time 𝑡 is d𝑡 per CCAC’s definition, then

𝑆𝑖 (𝑡) > 𝐴𝑖 (𝑡 − d𝑡).

	Abstract
	1 Introduction
	2 Delays and Delay-Convergence
	2.1 Delay Contributors
	2.2 Delay-Convergence

	3 Network Model
	4 Starvation is Inevitable for Delay-convergent Algorithms
	4.1 Example
	4.2 Definitions
	4.3 Starvation Theorem

	5 Real-world Algorithms
	5.1 Vegas, FAST, and Copa
	5.2 BBR
	5.3 PCC Vivace
	5.4 Loss-based CCAs

	6 Implications and Next Steps
	6.1 Is an f-efficient, Delay-Convergent CCA Achievable?
	6.2 Larger Oscillations May Avoid Starvation
	6.3 Avoiding Starvation in a Bounded Rate Range
	6.4 Explicit Signaling
	6.5 An Absolute Upper Bound

	7 Related Work
	8 Conclusion
	References
	A Proof of starvation of delay-convergent algorithms
	B Proof of the absolute upper bound
	C CCAC Extension

